imported>Salgueiro m (→Estrutura) |
|||
Linha 25: | Linha 25: | ||
{{categoria|Matemática}} | {{categoria|Matemática}} | ||
bcnth | |||
== Conceitos relacionados == | == Conceitos relacionados == |
Edição das 23h40min de 3 de março de 2006
Predefinição:Portal-matemática A matemática (do grego máthēma (μάθημα): ciência, conhecimento, aprendizagem; mathēmatikós (μαθηματικός): apreciador do conhecimento) é o estudo de padrões de quantidade, estrutura, mudanças e espaço.
Na visão moderna, é a investigação de estruturas abstratas definidas axiomaticamente, usando a lógica formal como estrutura comum. As estruturas específicas geralmente têm sua origem nas ciências naturais, mais comumente na física, mas os matemáticos também definem e investigam estruturas por razões puramente internas à matemática, por exemplo, ao perceberem que as estruturas fornecem uma generalização unificante de vários sub-campos ou uma ferramenta útil em cálculos comuns. Muitos matemáticos estudam as áreas que escolheram por razões estéticas – simplesmente porque eles acham que as estruturas investigadas são belas em si mesmas. Historicamente, as principais disciplinas dentro da matemática surgiram da necessidade de se efetuarem cálculos no comércio, medir terras e predizer eventos astronômicos. Estas três necessidades podem ser a grosso modo relacionadas à grande subdivisão da matemática no estudo das estruturas, dos espaços e das suas alterações.
O estudo de estruturas começa com os números naturais e números inteiros. As regras que governam as operações aritméticas são as da álgebra elementar e as propriedades mais profundas dos números inteiros são estudadas na teoria dos números. A investigação de métodos para resolver equações leva ao campo da álgebra abstrata, que, entre outras coisas, estuda anéis e corpos – estruturas que generalizam as propriedades possuídas pelos números. O conceito de vetor, importante para a física, é generalizado no espaço vetorial e estudado na álgebra linear, pertencendo aos dois ramos da estrutura e do espaço.
O estudo do espaço se originou com a Geometria, primeiro com a Geometria euclidiana e a trigonometria; mais tarde foram generalizadas nas geometrias não-Euclidianas, as quais cumprem importante papel na formulação da teoria da relatividade. A teoria de Galois permitiu resolverem-se várias questões sobre construções geométricas com régua e compasso. A geometria diferencial e a geometria algébrica generalizam a geometria em diferentes direções: a geometria diferencial enfatiza o conceito de sistemas de coordenadas, equilíbrio e direção, enquanto na geometria algébrica os objetos geométricos são descritos como conjuntos de solução de equações polinomiais. A teoria dos grupos investiga o conceito de simetria de forma abstrata e fornece uma ligação entre os estudos do espaço e da estrutura. A topologia conecta o estudo do espaço e o estudo das transformações, focando-se no conceito de continuidade.
Entender e descrever as alterações em quantidades mensuráveis é o tema comum das ciências naturais e o cálculo foi desenvolvido como a ferramenta mais útil para fazer isto. A descrição da variação de valor de uma grandeza é obtida por meio do conceito de função. O campo das equações diferenciais fornece métodos para resolver problemas que envolvem relações entre uma grandeza e suas variações. Os números reais são usados para representar as quantidades contínuas e o estudo detalhado das suas propriedades e das propriedades de suas funções consiste na análise real, a qual foi generalizada para análise complexa, abrangendo os números complexos. A análise funcional trata de funções definidas em espaços de dimensões tipicamente infinitas, constituindo a base para a formulação da mecânica quântica, entre muitas outras coisas.
Para esclarecer e investigar os fundamentos da matemática, foram desenvolvidos os campos da teoria dos conjuntos, lógica matemática e teoria dos modelos.
Quando os computadores foram concebidos, várias questões teóricas levaram à elaboração das teorias da computabilidade, complexidade computacional, informação e informação algorítmica, as quais são investigadas na ciência da computação.
Uma teoria importante desenvolvida pelo ganhador do Prêmio Nobel, John Nash, é a Teoria dos Jogos, que possui atualmente aplicações nos mais diversos campos, como no estudo de disputas comerciais.
Os computadores também contribuiram para o desenvolvimento da teoria do caos, que trata com o fato que muitos sistemas dinâmicos obedecem a leis que, na prática, tornam seu comportamento imprevisível. A teoria do caos tem relações estreitas com a geometria dos fractais, como o conjunto de Mandelbrot.
Um importante campo na matemática aplicada é a estatística, que permite a descrição, análise e previsão de fenômenos aleatórios e é usada em todas as ciências. A análise numérica investiga os métodos para resolver numéricamente e de forma eficiente vários problemas usando computadores e levando em conta os erros de arredondamento. A matemática discreta é o nome comum para estes campos da matemática úteis na ciência computacional.
Segue uma lista dos tópicos matemáticos.
bcnth
Conceitos relacionados
Espaço
Topologia -- Geometria -- Trigonometria -- Geometria Algébrica -- Geometria diferencial -- Topologia Diferencial -- Topologia Algébrica -- Álgebra Linear
Estrutura
Álgebra Abstrata -- Teoria dos Números -- Geometria Algébrica -- Teoria dos grupos -- Monóides -- Análise matemática -- Topologia -- Álgebra Linear -- Teoria dos grafos -- Álgebra Universal -- Teoria das Categorias
Fatos da Matemática
Cronologia da história da matemática -- História da matemática -- Matemáticos -- Problemas insolúveis da Matemática
Fundações e Métodos
Filosofia da Matemática -- Intuição Matemática -- Construtivismo Matemático -- Fundamentos da Matemática -- Teoria dos Conjuntos -- Lógica Simbólica -- Teoria dos Modelos -- Teoria das Categorias -- Demonstração de Teoremas -- Símbolos Matemáticos ...
Matemática Aplicada
Análise Numérica -- Otimização -- Probabilidade -- Estatística -- Problemas Lógicos -- Investigação Operacional
Matemática Discreta
Combinatória -- Teoria Básica de Conjuntos -- Probabilidade -- Estatística -- Teoria da Computação -- Matemática Discreta -- Criptografia -- Teoria dos Grafos -- Teoria dos Jogos
Prémios
Prémio Abel -- Prémio Problemas do Milênio (Clay Math Prize) -- União Internacional Matemática -- Competições Matemáticas
Quantidades
Números -- Números naturais -- Inteiros -- Números Racionais -- Números Reais -- Números Complexos -- Números Hipercomplexos -- Quaterniões -- Octoniões -- Sedeniões -- Números Hiperreais -- Números Surreais -- Números Ordinais -- Números Cardinais -- Números p-adicos -- Seqüências de Inteiros -- Constantes Matemáticas -- Nomenclatura dos Números -- Infinito -- Falha Lógica
Softwares Proprietários
Softwares Livres
Teoremas e Conjecturas Famosas
Último Teorema de Fermat -- Hipótese de Riemann -- Hipótese do Continuum -- Conjectura de Goldbach -- Conjectura dos Primos Gêmeos -- Teorema da Divergência -- Teorema da Incompletude de Gödel -- Conjectura de Poincaré -- Argumento da Diagonal de Cantor -- Teorema de Pitágoras -- Teorema do Limite Central -- Teorema Fundamental do Cálculo -- Teorema Fundamental da Álgebra -- Teorema das quatro cores -- Lema de Zorn -- Produtos Notáveis
Teorias
- Teorema da incompletude de Gödel
- Teoria dos Jogos
- Teoria das categorias
- Teoria dos conjuntos
- Teoria dos grupos
Transformações
Aritmética -- Cálculo -- Cálculo Vetorial -- Análise -- Equações Diferenciais -- Sistemas Dinâmicos -- Teoria do Caos -- Cálculo Fracional -- Lista de funções -- Polinômio de Taylor
- Matemática é a ciência que tem por objecto de estudo as relações entre os números, as formas, as grandezas e as operações entre estes elementos;
- Matemáticas: conjunto de ciências em que intervêm as teorias dos números.
- Matemáticas aplicadas: as que consideram as grandezas em determinados corpos ou assuntos;
- Matemáticas Mistas: as que consideram as propriedades da grandeza em certos corpos ou fenômenos particulares, como a Astronomia e a Mecânica;
- Matemáticas Puras: as que estudam as propriedades da grandeza em abstrato como a Geometria e a Álgebra.
Ligações externas
- IMPA Instituto Nacional de Matemática Pura e Aplicada - Brasil (em português)
- Matemática do Científico e do Vestibular
- Matemática Essencial - Ensino: Fundamental, Médio e Superior
- Olimpíada Brasileira de Matemática
- Olimpíada Paulista de Matemática
- Fórum Teorema
- The Mathematical Atlas
af:Wiskunde an:Matematicas ar:رياضيات ast:Matemátiques be:Матэматыка bg:Математика bn:গণিত br:Matematikoù bs:Matematika ca:Matemàtiques co:Matematica cs:Matematika csb:Matematika cy:Mathemateg da:Matematik de:Mathematik el:Μαθηματικά en:Mathematics eo:Matematiko es:Matemáticas et:Matemaatika eu:Matematika fa:ریاضیات fi:Matematiikka fo:Støddfrøði fr:Mathématiques fur:Matematiche fy:Wiskunde ga:Matamaitic gd:Matamataig gl:Matemática he:מתמטיקה hr:Matematika hu:Matematika ia:Mathematica id:Matematika io:Matematiko is:Stærðfræði it:Matematica ja:数学 jbo:cmaci ka:მათემატიკა km:គណិតសាស្ត្រ ko:수학 la:Mathematica lad:Matematika lb:Mathematik li:Mattemetik lt:Matematika lv:Matemātika mk:Математика ms:Matematik nds:Mathematik nl:Wiskunde no:Matematikk pl:Matematyka ro:Matematică ru:Математика scn:Matimàtica sco:Mathematics simple:Mathematics sk:Matematika sl:Matematika sq:Matematika sr:Математика su:Matematika sv:Matematik sw:Hisabati ta:கணிதம் th:คณิตศาสตร์ tl:Matematika tr:Matematik tt:Matematik uk:Математика vi:Toán học zh:数学 zh-min-nan:Sò·-ha̍k