imported>Yanguas m (removeu Categoria:Pitagóricos usando HotCat) |
imported>NAMmc2 |
||
Linha 124: | Linha 124: | ||
== Bibliografia == | == Bibliografia == | ||
SPINELLI, Miguel. ''Filósofos Pré-Socráticos. Primeiros Mestres da Filosofia e da Ciência Grega''. 2ª Ed., Porto Alegre: Edipucrs, 2003 | * SPINELLI, Miguel. ''Filósofos Pré-Socráticos. Primeiros Mestres da Filosofia e da Ciência Grega''. 2ª Ed., Porto Alegre: Edipucrs, 2003 | ||
{{Referências}} | {{Referências}} |
Edição das 18h42min de 22 de junho de 2019
Pitágoras | |
---|---|
Pré-socráticos | |
Busto de Pitágoras. Museus Capitolinos (Roma) | |
Nome completo | Predefinição:Politônico |
Escola/Tradição: | Pitagóricos, Naturalismo, Escola Itálica |
Data de nascimento: | ca. 571 a. C. - 570 a. C. |
Local: | Samos |
Morte | ca. 500 a. C. - 490 a. C. |
Principais interesses: | Metafísica, Música, Matemática, Ética, Política, Astronomia |
Trabalhos notáveis | Teorema de Pitágoras, Proporção áurea, Musica Universalis |
Influências: | Tales de Mileto |
Influenciados: | Filolau, Alcmeón, Parmênides, Platão, Euclides, Empédocles, Hipaso, Kepler |
Pitágoras de Samos Predefinição:Lang-grc-gre, ou apenas Πυθαγόρας; Πυθαγόρης em grego jônico; Predefinição:Circa 570 – c. 495 a.C.) foi um filósofo e matemático grego jônico creditado como o fundador do movimento chamado Pitagorismo.[1] A maioria das informações sobre Pitágoras foram escritas séculos depois que ele viveu, de modo que há pouca informação confiável sobre ele. Nasceu na ilha de Samos e viajou o Egito e Grécia e talvez a Índia, em 520 a.C. voltou a Samos.Cerca de 530 a.C., se mudou para Crotona, na Magna Grécia.[2]
Biografia
Nascido na ilha grega de Samos, sua mãe se chamava Pythais e seu pai Mnesarchus era um mercador da cidade de Tiro, além de Pitágoras havia outros dois ou três filhos. Pitágoras passou a infância em Samos embora tenha viajado bastante com seu pai; ele foi treinado pelos melhores professores, alguns deles filósofos. Tocava Lira, aprendeu aritmética, geometria, astronomia e poesia.[3]
Em cerca de 535 a.C., Pitágoras viajou para o Egito - alguns anos após a ocupação de Samos pelo tirano Policrates - lá, conheceu os templos e aprendeu sobre os sacerdotes locais.[3]
Em 525 a.C. o rei Persa Cambises I atacou o Egito e Pitágoras foi capturado e enviado para Babilônia (cidade) onde conheceu o sacerdote Mago que o instruiu sobre ensinamentos espirituais.[3]
Em 522 a.C. ambos Policrates e Sambyses já haviam morrido então Pitágoras retorna a Samos onde funda uma escola de filosofia chamada Semicírculo.[3][4]
Por volta de 518 a.C., para evitar conflitos políticos, viaja para o sul da Itália, para a cidade de Crotona onde funda uma escola espiritual,[3] lá, casa-se com Theanos de Creta, filha de Pythenax com quem tem uma filha, Myia.[4]
A escola Pitagórica
Os pitagóricos interessavam-se pelo estudo das propriedades dos números. Para eles, o número, sinônimo de harmonia, é constituído da soma de pares e ímpares (os números pares e ímpares expressando as relações que se encontram em permanente processo de mutação), sendo considerado como a essência das coisas, criando noções opostas (limitado e ilimitado) e a base da teoria da harmonia das esferas.
Segundo os pitagóricos, o cosmo é regido por relações matemáticas. A observação dos astros sugeriu-lhes que uma ordem domina o universo. Evidências disso estariam no dia e noite, no alterar-se das estações e no movimento circular e perfeito das estrelas. Por isso o mundo poderia ser chamado de cosmos, termo que contém as ideias de ordem, de correspondência e de beleza. Nessa cosmovisão também concluíram que a Terra é esférica, estrela entre as estrelas que se movem ao redor de um fogo central. Alguns pitagóricos chegaram até a falar da rotação da Terra sobre o eixo, mas a maior descoberta de Pitágoras ou dos seus discípulos (já que há obscuridades em torno do pitagorismo, devido ao caráter esotérico e secreto da escola) deu-se no domínio da geometria e se refere às relações entre os lados do triângulo retângulo. A descoberta foi enunciada no teorema de Pitágoras.
Pitágoras foi expulso de Crotona e passou a morar em Metaponto, onde morreu, provavelmente em 496 a.C. ou 497 a.C.. Segundo o pitagorismo, a essência, que é o princípio fundamental que forma todas as coisas é o número. Os pitagóricos não distinguem forma, lei, e substância, considerando o número o elo entre estes elementos. Para esta escola existiam quatro elementos: terra, água, ar e fogo.
Assim, Pitágoras e os pitagóricos investigaram as relações matemáticas e descobriram vários fundamentos da física e da matemática.
O símbolo utilizado pela escola era o pentagrama, que, como descobriu Pitágoras, possui algumas propriedades interessantes. Um pentagrama é obtido traçando-se as diagonais de um pentágono regular; pelas intersecções dos segmentos desta diagonal, é obtido um novo pentágono regular, que é proporcional ao original exatamente pela razão áurea.
Pitágoras descobriu em que proporções uma corda deve ser dividida para a obtenção das notas musicais no início, sem altura definida, sendo uma tomada como fundamental (pensemos numa longa corda presa a duas extremidades que, quando tangida, nos dará o som mais grave) - e a partir dela, gerar-se-á a quinta e terça através da reverberação harmônica. Os sons harmônicos. Prendendo-se a metade da corda, depois a terça parte e depois a quinta parte conseguiremos os intervalos de quinta e terça em relação à fundamental. A chamada SÉRIE HARMÔNICA. À medida que subdividimos a corda obtemos sons mais altos e os intervalos serão diferentes. E assim sucessivamente. Descobriu ainda que frações simples das notas, tocadas juntamente com a nota original, produzem sons agradáveis. Já as frações mais complicadas, tocadas com a nota original, produzem sons desagradáveis.
O nome está ligado principalmente ao importante teorema que afirma: Em todo triângulo retângulo, a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.
A escola pitagórica era conectada com concepções esotéricas e a moral pitagórica enfatizava o conceito de harmonia, práticas ascéticas e defendia a metempsicose. A propósito, no seu livro A Vida de Apolónio de Tiana, Filóstrato escreveu que Pitágoras não só sabia quem era como quem tinha sido.[5]
Durante o século IV a.C., verificou-se, no mundo grego, uma revivescência da vida religiosa. Segundo alguns historiadores, um dos fatores que concorreram para esse fenômeno foi a linha política adotada pelos tiranos: para garantir o papel de líderes populares e para enfraquecer a antiga aristocracia, os tiranos estimulavam a expansão de cultos populares ou estrangeiros.
Dentre estes cultos, um teve enorme difusão: o Orfismo (de Orfeu), originário da Trácia, e que era uma religião essencialmente esotérica. Os seguidores desta doutrina acreditavam na imortalidade da alma, ou seja, enquanto o corpo se degenerava, a alma migrava para outro corpo, por várias vezes, a fim de efetivar a purificação. Dioniso guiaria este ciclo de reencarnações, podendo ajudar o homem a libertar-se dele.
Pitágoras seguia uma doutrina diferente. Teria chegado à concepção de que todas as coisas são números e o processo de libertação da alma seria resultante de um esforço basicamente intelectual. A purificação resultaria de um trabalho intelectual, que descobre a estrutura numérica das coisas e torna, assim, a alma como uma unidade harmônica. Os números não seriam, neste caso, os símbolos, mas os valores das grandezas, ou seja, o mundo não seria composto dos números 0, 1, 2, etc., mas dos valores que eles exprimem. Assim, portanto, uma coisa manifestaria externamente a estrutura numérica, sendo esta coisa o que é por causa deste valor.
Principais descobertas
Além de grandes místicos, os pitagóricos eram grandes matemáticos. Eles descobriram propriedades interessantes e curiosas sobre os números.
Números figurados
Os pitagóricos estudaram e demonstraram várias propriedades dos números figurados. Entre estes o mais importante era o número triangular 10, chamado pelos pitagóricos de tetraktys, tétrada em português. Este número era visto como um número místico uma vez que continha os quatro elementos fogo, água, ar e terra: 10=1 + 2 + 3 + 4, e servia de representação para a completude do todo.
A tétrada, que os pitagóricos desenhavam com um α em cima, dois abaixo deste, depois três e por fim quatro na base, era um dos símbolos principais do seu conhecimento avançado das realidades teóricas.
Números perfeitos
A soma dos divisores de determinado número com exceção dele mesmo, é o próprio número. Exemplos:
- Os divisores de 6 são: e . Então, .
- Os divisores de 28 são: e . Então, .
Teorema de Pitágoras
Um problema não solucionado na época de Pitágoras era determinar as relações entre os lados de um triângulo retângulo. Pitágoras provou que a soma dos quadrados dos catetos é igual ao quadrado da hipotenusa.[carece de fontes]
O primeiro número irracional a ser descoberto foi a raiz quadrada do número 2, que surgiu exatamente da aplicação do teorema de Pitágoras em um triângulo de catetos valendo 1:
Os gregos não conheciam o símbolo da raiz quadrada e diziam simplesmente: "o número que multiplicado por si mesmo é 2".
A partir da descoberta da raiz de 2 foram descobertos muitos outros números irracionais.[carece de fontes]
Reitor da primeira universidade
A palavra Matemática (Mathematike, em grego) surgiu com Pitágoras, que foi o primeiro a concebê-la como um sistema de pensamento, fulcrado em provas dedutivas.
Existem, no entanto, indícios de que o chamado Teorema de Pitágoras (c²= a²+b²) já era conhecido dos babilônios em 1600 a.C. com escopo empírico. Estes usavam sistemas de notação sexagesimal na medida do tempo (1h=60min) e na medida dos ângulos (60º, 120º, 180º, 240º, 360º).
Pitágoras percorreu por 30 anos o Egito, Babilônia, Síria, Fenícia e talvez a Índia e a Pérsia, onde acumulou ecléticos conhecimentos: astronomia, matemática, ciência, filosofia, misticismo e religião. Ele foi contemporâneo de Tales de Mileto, Buda, Confúcio e Lao-Tsé.
Quando retornou a Samos, indispôs-se com o tirano Polícrates e emigrou para o sul da Itália, na ilha de Crotona, de dominação grega. Aí fundou a Escola Pitagórica, a quem se concede a glória de ser a "primeira Universidade do mundo".
A Escola Pitagórica e as atividades se viram desde então envoltas por um véu de lendas. Foi uma entidade parcialmente secreta com centenas de alunos que compunham uma irmandade religiosa e intelectual. Entre os conceitos que defendiam, destacam-se:
- prática de rituais de purificação e crença na doutrina da metempsicose, isto é, na transmigração da alma após a morte, de um corpo para outro. Portanto, advogavam a reencarnação e a imortalidade da alma;
- lealdade entre os membros e distribuição comunitária dos bens materiais;
- austeridade, ascetismo e obediência à hierarquia da Escola;
- proibição de beber vinho e comer carne (portanto é falsa a informação que os discípulos tivessem mandado matar 100 bois quando da demonstração do denominado Teorema de Pitágoras);
- purificação da mente pelo estudo de Geometria, Aritmética, Música e Astronomia;
- classificação aritmética dos números em pares, ímpares, primos e fatoráveis;
- "criação de um modelo de definições, axiomas, teoremas e provas, segundo o qual a estrutura intrincada da Geometria é obtida de um pequeno número de afirmações explicitamente feitas e da ação de um raciocínio dedutivo rigoroso" (George Simmons);
- grande celeuma instalou-se entre os discípulos de Pitágoras a respeito da irracionalidade do 'raiz de 2'. Utilizando notação algébrica, os pitagóricos não aceitavam qualquer solução numérica para x² = 2, pois só admitiam números racionais. Dada a conotação mística atribuída aos números, comenta-se que, quando o infeliz Hipaso de Metaponto propôs uma solução para o impasse, os outros discípulos o expulsaram da Escola e o afogaram no mar;
- na Astronomia, ideias inovadoras, embora nem sempre verdadeiras: a Terra é esférica, os planetas movem-se em diferentes velocidades nas várias órbitas ao redor da Terra. Pela cuidadosa observação dos astros, cristalizou-se a ideia de que há uma ordem que domina o Universo;
- aos pitagóricos deve-se provavelmente a construção do cubo, tetraedro, octaedro, dodecaedro e a bem conhecida "seção áurea";
- na Música, uma descoberta notável de que os intervalos musicais se colocam de modo que admitem expressões através de proporções aritméticas. Pitágoras - assim como outros filósofos gregos pré-socráticos - também descreveu o poder do som e seus efeitos sobre a psique humana. Essa experiência musicoterápica possivelmente foi utilizada mais tarde por Aristóteles como base teórica para sua definição de música, que, segundo ele, era uma "arte medicinal".
Pitágoras é o primeiro matemático puro. Entretanto é difícil separar o histórico do lendário, uma vez que deve ser considerado uma figura imprecisa historicamente, já que tudo o que dele sabemos deve-se à tradição oral. Nada deixou escrito, e os primeiros trabalhos sobre o mesmo deve-se a Filolau, quase 100 anos após a morte de Pitágoras. Mas não é fácil negar aos pitagóricos - assevera Carl Boyer - "o papel primordial para o estabelecimento da Matemática como disciplina racional". A despeito de algum exagero, há séculos cunhou-se uma frase: "Se não houvesse o 'teorema Pitágoras', não existiria a Geometria".
Ao biografar Pitágoras, Jâmblico (c. 300 d.C.) registra que o mestre vivia repetindo aos discípulos: “todas as coisas se assemelham aos números”.
A Escola Pitagórica ensejou forte influência na poderosa verba de Euclides, Arquimedes e Platão, na antiga era cristã, na Idade Média, na Renascença e até em nossos dias com o Neopitagorismo.
Bibliografia
- SPINELLI, Miguel. Filósofos Pré-Socráticos. Primeiros Mestres da Filosofia e da Ciência Grega. 2ª Ed., Porto Alegre: Edipucrs, 2003
Referências
- ↑ Tucker McElroy (2009). A to Z of Mathematicians. Infobase Publishing. p. 218. ISBN 978-1-4381-0921-3.
- ↑ Gilberto Geraldo Garbi (2006). A Rainha das Ciências. Editora Livraria da Fisica. p. 25. ISBN 978-85-88325-61-6.
- ↑ 3,0 3,1 3,2 3,3 3,4 Igor Kononenko (2010). Teachers of Wisdom. Dorrance Publishing. pp. 57–58. ISBN 978-1-4349-5410-7.
- ↑ 4,0 4,1 Kitty Ferguson (2011). Pythagoras: His Lives and the Legacy of a Rational Universe. Icon Books. p. 65. ISBN 978-1-84831-250-0.
- ↑ Flavius Philostratus, The Life of Apollonius of Tyana , , trad. F. C. Conybeare, Vol. 2, London, 1912, Book VI, p. 39