Resistividade eléctrica (também resistência eléctrica específica) é uma medida da oposição de um material ao fluxo de corrente eléctrica. Quanto mais baixa for a resistividade, mais facilmente o material permite a passagem de uma carga eléctrica. Sua unidade no SI é o ohm-metro (Ωm).
Definições
A resistência eléctrica R de um dispositivo está relacionada com a resistividade ρ de um material de acordo com a expressão:
Em que:
ρ é a resistividade eléctrica (em ohm-metros, Ωm);
R é a resistência elétrica de um espécime uniforme do material (em ohms, Ω);
é o comprimento do espécime (medido em metros);
A é a área da seção do espécime (em metros quadrados, m²).
É importante salientar que essa relação não é geral e vale apenas para materiais uniformes e isotrópicos, com seções transversais também uniformes. De toda forma, os fios condutores normalmente utilizados apresentam estas duas características.
A resistividade elétrica pode ainda ser definida como:
Em que:
E é a magnitude do campo eléctrico (em volts por metro, V/m);
J é a magnitude da densidade de corrente (em amperes por metro quadrado, A/m²).
Finalmente, a resistividade pode também ser definida como sendo o inverso da condutividade eléctrica σ do material, ou
Dependência da temperatura
Uma vez que é dependente da temperatura, a resistência específica geralmente é apresentada para temperatura de 20 °C. No caso dos metais, aumenta à medida que aumenta a temperatura, enquanto que nos semicondutores, diminui à medida que a temperatura aumenta.
Resistividade dos materiais condutores
A resistência de um condutor deve-se às colisões entre as cargas de condução e os átomos ou iões. As cargas de condução são aceleradas pela força eletrostática, mas devido às colisões acabam por atingir uma velocidade média constante.
A resistência é determinada pela relação que existir entre a velocidade média atingida e a diferença de potencial (por unidade de comprimento) que produz o movimento.
Os fatores que determinam o valor da resistência são a natureza do material, o tamanho do condutor e a temperatura.
Para estudar a influência do tamanho do condutor, consideremos dois cilindros idênticos, de comprimento L e área transversal A, cada um com resistência R, ligados em série ou em paralelo.
No primeiro caso, é como se tivéssemos um único cilindro de comprimento 2L. Dessa forma, se a corrente for I, a diferença de potencial será RI + RI. Nomeadamente, a resistência do sistema é 2R. Assim, como ao duplicar o comprimento duplica-se a resistência, ela é diretamente proporcional ao comprimento do condutor.
No segundo caso, é como se tivéssemos um único condutor de comprimento L e área transversal 2A. Nesse caso, se a diferença de potencial em cada um dos cilindros for , a corrente em cada cilindro será e a corrente total será , que corresponde à corrente num sistema com resistência R=2. Assim, como duplicando a área transversal, a resistência diminui à metade, tem-se que a resistência é inversamente proporcional à área da seção transversal.
Por isso, a resistência de um condutor com comprimento L e área transversal A é:
onde a constante de proporcionalidade é a resitividade do material.
Nos condutores ôhmicos, quando a temperatura não estiver perto do zero absoluto (-273,15 °C, ou 0 K), a resistência aumenta com a temperatura de forma quase linear.[1]
A expressão empírica para a resistência de um condutor, em função da temperatura, é:
Na qual:
é a resistência a 20 °C;
é o coeficiente de temperatura;
e é a temperatura em graus Celsius.
O coeficiente de temperatura é o mesmo para todos os condutores feitos do mesmo material; cada material tem um coeficiente de temperatura próprio que é medido experimentalmente.
Observe que o declive da reta na figura acima é o produto consequentemente, a pesar de o declive ser quase constante, o valor da constante depende da temperatura.[1]
Exemplos de resistividades
O melhor condutor elétrico conhecido (a temperatura ambiente) é a prata. Este metal, no entanto, é excessivamente caro para o uso em larga escala. O cobre vem em segundo lugar na lista dos melhores condutores, sendo amplamente usado na confecção de fios e cabos condutores. Logo após o cobre, encontramos o ouro que, embora não seja tão bom condutor como os anteriores, devido à sua alta estabilidade química (metal nobre) praticamente não oxida e resiste a ataques de diversos agentes químicos, sendo assim empregado para banhar contatos elétricos. O alumínio, em quarto lugar, é três vezes mais leve que o cobre, característica vantajosa para a instalação de cabos em linhas de longa distância. Abaixo apresentam-se alguns materiais e suas respectivas resistividades em Ωm:
Material | Resistividade (Ωm) a 20 °C | Coeficiente* | Fonte |
---|---|---|---|
Prata | 1,59×10−8 | 0,0038 | [2][3] |
Cobre | 1,72×10−8 | 0,0039 | [3] |
Ouro | 2,44×10−8 | 0,0034 | [2] |
Alumínio | 2,92×10−8 | 0,0039 | [2] |
Tungstênio | 5,60×10−8 | 0,0045 | [2] |
Niquel | 6,99×10−8 | ? | |
Latão | 8,0×10−8 | 0,0015 | |
Ferro | 1,0×10−7 | 0,005 | [2] |
Estanho | 1,09×10−7 | 0,0045 | |
Platina | 1,1×10−7 | 0,00392 | [2] |
Chumbo | 2,2×10−7 | 0,0039 | [2] |
Manganin | 4,82×10−7 | 0,000002 | [4] |
Constantan | 4,9×10−7 | 0,00001 | [4] |
Mercúrio | 9,8×10−7 | 0,0009 | [4] |
Nicromo[5] | 1,10×10−6 | 0,0004 | [2] |
Carbono[6] | 3,5×10−5 | -0,0005 | [2] |
Germânio[6] | 4,6×10−1 | -0,048 | [2][3] |
Silício[6] | 6,40×102 | -0,075 | [2] |
Vidro | 1,0×1010 a 1,0×1014 | ? | [2][3] |
Ebonite | approx. 1,0×1013 | ? | [2] |
Enxofre | 1,0×1015 | ? | [2] |
Parafina | 1,0×1017 | ? | |
Quartzo (fundido) | 7,5×1017 | ? | [2] |
PET | 1,0×109 | ? | [3] |
Teflon | 1,0×1022 a 1,0×1024 | ? |
Para se calcular a resistência de um determinado material a partir de sua resistividade ou resistência específica utiliza-se a equação:
Resistência [Ω] = resistividade [Ωm] × comprimento [m] / área da secção transversal [m²]
Ver também
Referências
- ↑ 1,0 1,1 [ Eletricidade e Magnetismo. Porto: Jaime E. Villate, 20 de março de 2013. 221 págs]. Creative Commons Atribuição-Partilha (versão 3.0) ISBN 978-972-99396-2-4. Acesso em 14 jun. 2013.
- ↑ 2,00 2,01 2,02 2,03 2,04 2,05 2,06 2,07 2,08 2,09 2,10 2,11 2,12 2,13 2,14 Serway, Raymond A. (1998). Principles of Physics 2nd ed. Fort Worth, Texas; London: Saunders College Pub. p. 602. ISBN 0-03-020457-7
- ↑ 3,0 3,1 3,2 3,3 3,4 Griffiths, David (1999) [1981]. «7. Electrodynamics». In: Alison Reeves (ed.). Introduction to Electrodynamics 3rd ed. Upper Saddle River, New Jersey: Prentice Hall. p. 286. ISBN 0-13-805326-x Verifique
|isbn=
(ajuda). OCLC 40251748 Verifique data em:|acessodata=
(ajuda); - ↑ 4,0 4,1 4,2 Giancoli, Douglas C. (1995). Physics: Principles with Applications 4th ed. London: Prentice Hall. ISBN 0-13-102153-2
(see also Table of Resistivity) - ↑ Ni,Fe,Cr alloy commonly used in heating elements.
- ↑ 6,0 6,1 6,2 The resistivity of semiconductors depends strongly on the presence of impurities in the material.