𝖂𝖎ƙ𝖎𝖊

Álgebra linear: mudanças entre as edições

imported>Kaktus Kid
(+ predef)
imported>Francisco Quiumento
Linha 30: Linha 30:
*[[Teorema do Núcleo e da Imagem]]
*[[Teorema do Núcleo e da Imagem]]
*[[Teorema Espectral]]
*[[Teorema Espectral]]
*[[Teorema dos Valores Singulares]]
*[[Decomposição em valores singulares|Teorema dos Valores Singulares]]
*[[Teorema de Cayley-Hamilton]]
*[[Teorema de Cayley-Hamilton]]
*Todo espaço vetorial possui uma [[Base (álgebra linear)|base]].<ref>The existence of a basis is straightforward for [[:en:finitely generated module|finitely generated]] vector spaces, but in [[:en:dimension theorem for vector spaces|full generality]] it is [[:en:Logical equivalence|logically equivalent]] to the [[:en:axiom of choice|axiom of choice]].</ref>
*Todo espaço vetorial possui uma [[Base (álgebra linear)|base]].<ref>The existence of a basis is straightforward for [[:en:finitely generated module|finitely generated]] vector spaces, but in [[:en:dimension theorem for vector spaces|full generality]] it is [[:en:Logical equivalence|logically equivalent]] to the [[:en:axiom of choice|axiom of choice]].</ref>

Edição das 15h22min de 17 de outubro de 2014

Linhas e planos passando através da origem são subespaços lineares no espaço euclidiano R³. Subespaços são estudados em álgebra linear.

Álgebra linear é um ramo da matemática que surgiu do estudo detalhado de sistemas de equações lineares, sejam elas algébricas ou diferenciais. A álgebra linear se utiliza de alguns conceitos e estruturas fundamentais da matemática como vetores, espaços vetoriais, transformações lineares, sistemas de equações lineares e matrizes.

História

Muitas das ferramentas básicas da álgebra linear, particularmente aquelas relacionadas com a solução de sistemas de equações lineares, datam da antiguidade, como a eliminação gaussiana, citada pela primeira vez por volta do século II d.c., embora muitas dessas ferramentas não tenham sido isoladas e consideradas separadamente até os séculos XVII e XVIII. O método dos mínimos quadrados, usado pela primeira vez por Carl Friedrich Gauss no final do século XVIII, é uma aplicação inicial e significante das ideias da álgebra linear.

O assunto começou a tomar sua forma atual em meados do século XIX, que viu muitas noções e métodos de séculos anteriores abstraídas e generalizadas como o início da álgebra abstrata. Matrizes e tensores foram introduzidos como objetos matemáticos abstratos e bem estudados na virada do século XX. O uso de tais objetos na relatividade geral, estatística e mecânica quântica fez muito para espalhar o assunto para além da matemática pura.

Sistemas de equações lineares

Ver artigo principal: Sistema de equações lineares

Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares nas mesmas variáveis.

Geometria analítica

Ver artigo principal: Geometria analítica

A geometria analítica, também chamada geometria de coordenadas e que antigamente recebia o nome de geometria cartesiana, é o estudo da geometria através dos princípios da álgebra. Em geral, é usado o sistema de coordenadas cartesianas para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. Alguns pensam que a introdução da geometria analítica constituiu o início da matemática moderna. Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas.

Espaços vetoriais

Ver artigo principal: Espaço vetorial

Espaços vetoriais são um tema central na matemática moderna; assim, a álgebra linear é largamente usada em álgebra abstrata e análise funcional. A álgebra linear também tem sua representação concreta em geometria analítica.

Transformação linear

Ver artigo principal: Transformação linear

Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da álgebra abstrata, uma transformação linear é um homomorfismo de espaços vetoriais.

Teoremas fundamentais

Aplicações

Referências

Ver também

Wikilivros
O Wikilivros tem um livro chamado Álgebra linear

Livros online

Ligações externas


Predefinição:Álgebra Predefinição:Álgebra linear Predefinição:Áreas da matemática

talvez você goste