imported>All is love love |
imported>Kaktus Kid Sem resumo de edição |
||
Linha 1: | Linha 1: | ||
[[ | [[Imagem:EigenvectorsRotation.svg|thumb|Linhas e planos passando através da origem são subespaços lineares no espaço euclidiano '''R'''³. Subespaços são estudados em álgebra linear.]] | ||
'''Álgebra linear''' é um ramo da [[matemática]] que surgiu do estudo detalhado de sistemas de [[Equação linear|equações lineares]], sejam elas [[equação algébrica|algébricas]] ou [[equação diferencial|diferenciais]]. A álgebra linear se utiliza de alguns conceitos e estruturas fundamentais da matemática como [[Vector (espacial)|vetores]], [[espaço vetorial|espaços vetoriais]], [[transformação linear|transformações lineares]], [[sistema de equações lineares|sistemas de equações lineares]] e [[matriz (matemática)|matrizes]]. | '''Álgebra linear''' é um ramo da [[matemática]] que surgiu do estudo detalhado de sistemas de [[Equação linear|equações lineares]], sejam elas [[equação algébrica|algébricas]] ou [[equação diferencial|diferenciais]]. A álgebra linear se utiliza de alguns conceitos e estruturas fundamentais da matemática como [[Vector (espacial)|vetores]], [[espaço vetorial|espaços vetoriais]], [[transformação linear|transformações lineares]], [[sistema de equações lineares|sistemas de equações lineares]] e [[matriz (matemática)|matrizes]]. | ||
== História == | ==História== | ||
Muitas das ferramentas básicas da álgebra linear, particularmente aquelas relacionadas com a solução de sistemas de equações lineares, datam da antiguidade, como a [[eliminação gaussiana]], citada pela primeira vez por volta do século II d.c., embora muitas dessas ferramentas não tenham sido isoladas e consideradas separadamente até os séculos XVII e XVIII. O [[método dos mínimos quadrados]], usado pela primeira vez por [[Gauss]] no final do século XVIII, é uma aplicação inicial e significante das ideias da álgebra linear. | Muitas das ferramentas básicas da álgebra linear, particularmente aquelas relacionadas com a solução de sistemas de equações lineares, datam da antiguidade, como a [[eliminação gaussiana]], citada pela primeira vez por volta do século II d.c., embora muitas dessas ferramentas não tenham sido isoladas e consideradas separadamente até os séculos XVII e XVIII. O [[método dos mínimos quadrados]], usado pela primeira vez por [[Gauss]] no final do século XVIII, é uma aplicação inicial e significante das ideias da álgebra linear. | ||
O assunto começou a tomar sua forma atual em meados do século XIX, que viu muitas noções e métodos de séculos anteriores abstraídas e generalizadas como o início da [[álgebra abstrata]]. [[matriz (matemática)|Matrizes]] e [[tensor]]es foram introduzidos como objetos matemáticos abstratos e bem estudados na virada do século XX. O uso de tais objetos na [[relatividade geral]], [[estatística]] e [[mecânica quântica]] fez muito para espalhar o assunto para além da matemática pura. | O assunto começou a tomar sua forma atual em meados do século XIX, que viu muitas noções e métodos de séculos anteriores abstraídas e generalizadas como o início da [[álgebra abstrata]]. [[matriz (matemática)|Matrizes]] e [[tensor]]es foram introduzidos como objetos matemáticos abstratos e bem estudados na virada do século XX. O uso de tais objetos na [[relatividade geral]], [[estatística]] e [[mecânica quântica]] fez muito para espalhar o assunto para além da matemática pura. | ||
== Sistemas de equações lineares == | ==Sistemas de equações lineares== | ||
{{AP|[[Sistema de equações lineares]]}} | {{AP|[[Sistema de equações lineares]]}} | ||
Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares nas mesmas variáveis. | Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares nas mesmas variáveis. | ||
== Geometria analítica == | ==Geometria analítica== | ||
{{AP|[[Geometria analítica]]}} | {{AP|[[Geometria analítica]]}} | ||
A geometria analítica, também chamada geometria de coordenadas e que antigamente recebia o nome de geometria cartesiana, é o estudo da geometria através dos princípios da álgebra. Em geral, é usado o sistema de [[coordenadas cartesianas]] para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. Alguns pensam que a introdução da geometria analítica constituiu o início da matemática moderna. Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês [[René Descartes]] (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. | A geometria analítica, também chamada geometria de coordenadas e que antigamente recebia o nome de geometria cartesiana, é o estudo da geometria através dos princípios da álgebra. Em geral, é usado o sistema de [[coordenadas cartesianas]] para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. Alguns pensam que a introdução da geometria analítica constituiu o início da matemática moderna. Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês [[René Descartes]] (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas. | ||
== Espaços vetoriais == | ==Espaços vetoriais== | ||
{{AP|[[Espaço vetorial]]}} | {{AP|[[Espaço vetorial]]}} | ||
Espaços vetoriais são um tema central na [[matemática]] moderna; assim, a álgebra linear é largamente usada em [[álgebra abstrata]] e [[análise funcional]]. A álgebra linear também tem sua representação concreta em [[geometria analítica]]. | Espaços vetoriais são um tema central na [[matemática]] moderna; assim, a álgebra linear é largamente usada em [[álgebra abstrata]] e [[análise funcional]]. A álgebra linear também tem sua representação concreta em [[geometria analítica]]. | ||
== Transformação linear == | ==Transformação linear== | ||
{{AP|[[Transformação linear]]}} | {{AP|[[Transformação linear]]}} | ||
Em Matemática, uma transformação linear é um tipo particular de [[função]] entre dois [[espaço vetorial|espaços vetoriais]] que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da [[álgebra abstrata]], uma transformação linear é um homomorfismo de espaços vetoriais. | Em Matemática, uma transformação linear é um tipo particular de [[função]] entre dois [[espaço vetorial|espaços vetoriais]] que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da [[álgebra abstrata]], uma transformação linear é um homomorfismo de espaços vetoriais. | ||
== Teoremas fundamentais == | ==Teoremas fundamentais== | ||
* [[Teorema do Núcleo e da Imagem]] | *[[Teorema do Núcleo e da Imagem]] | ||
* [[Teorema Espectral]] | *[[Teorema Espectral]] | ||
* [[Teorema dos Valores Singulares]] | *[[Teorema dos Valores Singulares]] | ||
* [[Teorema de Cayley-Hamilton]] | *[[Teorema de Cayley-Hamilton]] | ||
* Todo espaço vetorial possui uma [[Base (álgebra linear)|base]].<ref>The existence of a basis is straightforward for [[:en:finitely generated module|finitely generated]] vector spaces, but in [[:en:dimension theorem for vector spaces|full generality]] it is [[:en:Logical equivalence|logically equivalent]] to the [[:en:axiom of choice|axiom of choice]].</ref> | *Todo espaço vetorial possui uma [[Base (álgebra linear)|base]].<ref>The existence of a basis is straightforward for [[:en:finitely generated module|finitely generated]] vector spaces, but in [[:en:dimension theorem for vector spaces|full generality]] it is [[:en:Logical equivalence|logically equivalent]] to the [[:en:axiom of choice|axiom of choice]].</ref> | ||
* Quaisquer duas bases do espaço vetorial têm a mesma cardinalidade; equivalentemente, a dimensão de um espaço vetorial é bem definido.<ref>[[:en:Dimension theorem for vector spaces|Dimension theorem for vector spaces]]</ref> | *Quaisquer duas bases do espaço vetorial têm a mesma cardinalidade; equivalentemente, a dimensão de um espaço vetorial é bem definido.<ref>[[:en:Dimension theorem for vector spaces|Dimension theorem for vector spaces]]</ref> | ||
* Uma [[matriz quadrada]] é inversível se e somente se seu determinante for diferente de [[zero]].<ref> | *Uma [[matriz quadrada]] é inversível se e somente se seu determinante for diferente de [[zero]].<ref> | ||
http://www.pragmaware.net/articles/matrices/index.php</ref> | http://www.pragmaware.net/articles/matrices/index.php</ref> | ||
* A [[matriz]] é [[matriz inversa|inversível]] se e somente se a transformação linear representada pela matriz é um [[isomorfismo]]. | *A [[matriz]] é [[matriz inversa|inversível]] se e somente se a transformação linear representada pela matriz é um [[isomorfismo]]. | ||
== Aplicações == | ==Aplicações== | ||
*[[Programação linear]] | |||
*[[Processamento de imagens]] | |||
* [[ | *[[Física matemática]] | ||
* [[ | *[[Estatística]] | ||
* [[ | |||
* [[ | |||
{{Referências}} | {{Referências}} | ||
== | ==Ver também}== | ||
{{Wikilivros|Álgebra linear}} | {{Wikilivros|Álgebra linear}} | ||
* [[Regra de Cramer]] | *[[Regra de Cramer]] | ||
* [[Subespaço vetorial]] | *[[Subespaço vetorial]] | ||
* [[Vetor]] | *[[Vetor]] | ||
* [[Equação linear]] | *[[Equação linear]] | ||
=== Livros online === | === Livros online === | ||
Linha 67: | Linha 65: | ||
{{dividir em colunas fim}} | {{dividir em colunas fim}} | ||
== | ==Ligações externas== | ||
* [http://www.algebrasolver.totalh.com Calculadora online para solucionar um sistema de equações usando a regra de Cramer] | *[http://www.algebrasolver.totalh.com Calculadora online para solucionar um sistema de equações usando a regra de Cramer] | ||
[[Categoria:Álgebra linear|!]] | [[Categoria:Álgebra linear|!]] |
Edição das 05h24min de 23 de agosto de 2012
Álgebra linear é um ramo da matemática que surgiu do estudo detalhado de sistemas de equações lineares, sejam elas algébricas ou diferenciais. A álgebra linear se utiliza de alguns conceitos e estruturas fundamentais da matemática como vetores, espaços vetoriais, transformações lineares, sistemas de equações lineares e matrizes.
História
Muitas das ferramentas básicas da álgebra linear, particularmente aquelas relacionadas com a solução de sistemas de equações lineares, datam da antiguidade, como a eliminação gaussiana, citada pela primeira vez por volta do século II d.c., embora muitas dessas ferramentas não tenham sido isoladas e consideradas separadamente até os séculos XVII e XVIII. O método dos mínimos quadrados, usado pela primeira vez por Gauss no final do século XVIII, é uma aplicação inicial e significante das ideias da álgebra linear.
O assunto começou a tomar sua forma atual em meados do século XIX, que viu muitas noções e métodos de séculos anteriores abstraídas e generalizadas como o início da álgebra abstrata. Matrizes e tensores foram introduzidos como objetos matemáticos abstratos e bem estudados na virada do século XX. O uso de tais objetos na relatividade geral, estatística e mecânica quântica fez muito para espalhar o assunto para além da matemática pura.
Sistemas de equações lineares
Um sistema de equações lineares (abreviadamente, sistema linear) é um conjunto finito de equações lineares nas mesmas variáveis.
Geometria analítica
A geometria analítica, também chamada geometria de coordenadas e que antigamente recebia o nome de geometria cartesiana, é o estudo da geometria através dos princípios da álgebra. Em geral, é usado o sistema de coordenadas cartesianas para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. Alguns pensam que a introdução da geometria analítica constituiu o início da matemática moderna. Os estudos iniciais da Geometria Analítica se deram no século XVII , e devem-se ao filósofo e matemático francês René Descartes (1596 - 1650), inventor das coordenadas cartesianas (assim chamadas em sua homenagem), que permitiram a representação numérica de propriedades geométricas.
Espaços vetoriais
Espaços vetoriais são um tema central na matemática moderna; assim, a álgebra linear é largamente usada em álgebra abstrata e análise funcional. A álgebra linear também tem sua representação concreta em geometria analítica.
Transformação linear
Em Matemática, uma transformação linear é um tipo particular de função entre dois espaços vetoriais que preserva as operações de adição vetorial e multiplicação por escalar. Uma transformação linear também pode ser chamada de aplicação linear ou mapa linear. No caso em que o domínio e contradomínio coincidem, é usada a expressão operador linear. Na linguagem da álgebra abstrata, uma transformação linear é um homomorfismo de espaços vetoriais.
Teoremas fundamentais
- Teorema do Núcleo e da Imagem
- Teorema Espectral
- Teorema dos Valores Singulares
- Teorema de Cayley-Hamilton
- Todo espaço vetorial possui uma base.[1]
- Quaisquer duas bases do espaço vetorial têm a mesma cardinalidade; equivalentemente, a dimensão de um espaço vetorial é bem definido.[2]
- Uma matriz quadrada é inversível se e somente se seu determinante for diferente de zero.[3]
- A matriz é inversível se e somente se a transformação linear representada pela matriz é um isomorfismo.
Aplicações
Referências
- ↑ The existence of a basis is straightforward for finitely generated vector spaces, but in full generality it is logically equivalent to the axiom of choice.
- ↑ Dimension theorem for vector spaces
- ↑ http://www.pragmaware.net/articles/matrices/index.php
Ver também}
Livros online
- J. Santos, Reginaldo, Introdução à Álgebra Linear
- Álgebra Lineal: Conceptos Básicos
- Introducción al Álgebra Lineal en Contexto por José Arturo Barreto
- Beezer, Rob, A First Course in Linear Algebra
- Connell, Edwin H., Elements of Abstract and Linear Algebra
- Hefferon, Jim, Linear Algebra
- Matthews, Keith, Elementary Linear Algebra
- Sharipov, Ruslan, Course of linear algebra and multidimensional geometry
Ligações externas
af:Lineêre algebra ar:جبر خطي az:Xətti cəbr be:Лінейная алгебра bg:Линейна алгебра bn:রৈখিক বীজগণিত bs:Linearna algebra ca:Àlgebra lineal cs:Lineární algebra da:Lineær algebra de:Lineare Algebra el:Γραμμική άλγεβρα en:Linear algebra eo:Lineara algebro es:Álgebra lineal et:Lineaaralgebra eu:Aljebra lineal fa:جبر خطی fi:Lineaarialgebra fr:Algèbre linéaire gan:線性代數 gl:Álxebra lineal he:אלגברה לינארית hr:Linearna algebra hu:Lineáris algebra id:Aljabar linear is:Línuleg algebra it:Algebra lineare ja:線型代数学 ka:წრფივი ალგებრა ko:선형대수학 lt:Tiesinė algebra lv:Lineārā algebra mk:Линеарна алгебра ms:Algebra linear nl:Lineaire algebra nn:Lineær algebra no:Lineær algebra pl:Algebra liniowa pms:Àlgebra linear ro:Algebră liniară ru:Линейная алгебра scn:Algibbra liniari sh:Linearna algebra simple:Linear algebra sk:Lineárna algebra sl:Linearna algebra sq:Algjebra lineare sr:Линеарна алгебра sv:Linjär algebra ta:நேரியல் இயற்கணிதம் tg:Алгебраи хаттӣ th:พีชคณิตเชิงเส้น tr:Doğrusal cebir uk:Лінійна алгебра ur:لکیری الجبرا vi:Đại số tuyến tính yi:ליניארע אלגעברע yo:Áljẹ́brà onígbọrọ zh:线性代数