𝖂𝖎ƙ𝖎𝖊

Tarbosaurus

Predefinição:Automatic taxobox Tarbosaurus (do latim "lagarto espantoso") é um gênero de dinossauro tiranossaurídeo que floresceu na Ásia cerca de 70 milhões de anos atrás, no final do período Cretáceo Superior, considerado como contendo uma única conhecida espécie, Tarbosaurus bataar. Fósseis foram recuperados na Mongólia, com restos mais fragmentados encontrados mais longe em partes da China.[1]

Devido às grandes semelhanças entre o Tarbosaurus e o Tyrannosaurus, foi originalmente chamado de Tyrannosaurus bataar, e alguns cientistas ainda consideram esse nome preferível a Tarbosaurus bataar, mas outros defendem que as espécies sejam mantidas em géneros separados por causa de separação geográfica: T. rex viveu na América do Norte, enquanto T. bataar viveu na Ásia, e no período Cretáceo os continentes estavam separados.

Como a maioria dos tiranossaurídeos conhecidos, o Tarbosaurus era um grande predador bípede, medindo aproximadamente 10 metros de comprimento, 3 metros de altura do quadril e pesando até 5 toneladas. Ele tinha um mecanismo de travamento único em sua mandíbula, equipado com cerca de sessenta dentes grandes e os menores membros anteriores em relação ao tamanho do corpo de todos os tiranossaurídeos, famosos por seus membros anteriores desproporcionalmente pequenos e com dois dedos.

Grande parte dos espécimes de Tarbosaurus foram encontrados na Formação Nemegt. Em seu ambiente, reinava como um superpredador, convivendo com anquilossaurídeos como Saichania, saurópodes como Nemegtosaurus,e hadrossaurídeos como Saurolophus, que possivelmente eram suas presas. Os indivíduos mais jovens provavelmente competiam com predadores menores como o Alioramus e Bagaraatan. Também convivia com terópodes mais distintos como Therizinosaurus e Deinocheirus, bem como ornithomimossauros, como Anserimimus e Gallimimus.[1]

História da descoberta

Crânio holótipo PIN 551–1, Museu de Paleontologia, Moscou

Em 1946, uma expedição conjunta soviético-mongol ao deserto de Gobi, na província mongol de Ömnögovi, descobriu um grande crânio de terópode e algumas vértebras na formação Nemegt. Em 1955, Evgeny Maleev, um paleontólogo soviético, fez desse espécime o holótipo (PIN 551-1) de uma nova espécie, que ele chamou de Tyrannosaurus bataar.[2][3] O nome específico é um erro ortográfico do mongol баатар / baatar ("herói").[3][4] No mesmo ano, Maleev também descreveu e nomeou três novos crânios de terópodes, cada um associado a restos de esqueletos descobertos pela mesma expedição em 1948 e 1949. O primeiro deles (PIN 551-2) foi denominado Tarbosaurus efremovi, um novo nome genérico composto do grego antigo τάρβος (tarbos) ("terror", "alarme", "temor" ou "reverência") e σαυρος (sauros) ("lagarto"),[5] e as espécies com o nome de Ivan Yefremov, um russo paleontólogo e autor de ficção científica. As outras duas (PIN 553-1 e PIN 552-2) também foram nomeadas como novas espécies e atribuídas ao gênero norte-americano Gorgosaurus (G. lancinator e G. novojilovi, respectivamente). Todos os três últimos espécimes são menores que o primeiro.[6]

Amostra do espécime PIN 553–1, holótipo do Gorgosaurus lancinator, em posição de morte

Um artigo de 1965 de A.K. Rozhdestvensky reconheceu todos os espécimes de Maleev como diferentes estágios de crescimento da mesma espécie, que ele acreditava ser diferente do tiranossauro norte-americano. Ele criou uma nova combinação, Tarbosaurus bataar, para incluir todos os espécimes descritos em 1955, bem como material mais recente.[7] Autores posteriores, incluindo o próprio Maleev,[8] concordaram com a análise de Rozhdestvensky, embora alguns usassem o nome Tarbosaurus efremovi em vez de T. bataar.[9] O paleontólogo americano Kenneth Carpenter reexaminou o material em 1992. Ele concluiu que pertencia ao gênero Tyrannosaurus, conforme publicado originalmente por Maleev, e agrupou todos os espécimes na espécie Tyrannosaurus bataar, exceto os restos que Maleev havia batizado de "Gorgosaurus" novojilovi. Carpenter pensou que este espécime representava um gênero menor e separado de tiranossaurídeo, que ele chamou de Maleevosaurus novojilovi.[10] George Olshevsky criou o novo nome genérico Jenghizkhan (após Genghis Khan) para Tyrannosaurus bataar em 1995, enquanto também reconhecia Tarbosaurus efremovi e Maleevosaurus novojilovi, para um total de três gêneros contemporâneos distintos da Formação Nemegt.[11] Um estudo de 1999 posteriormente reclassificou o Maleevosaurus como um Tarbosaurus juvenil.[12] Todas as pesquisas publicadas desde 1999 reconhecem apenas uma única espécie, que é chamada Tarbosaurus bataar[13][14][15] ou Tyrannosaurus bataar.[16]

Após as expedições russo-mongóis originais na década de 1940, as expedições conjuntas polaco-mongóis ao deserto de Gobi começaram em 1963 e continuaram até 1971, recuperando muitos novos fósseis, incluindo novos espécimes de Tarbosaurus da Formação Nemegt.[3] Expedições envolvendo cientistas japoneses e mongóis entre 1993 e 1998,[17] bem como expedições privadas organizadas pelo paleontólogo canadense Phil Currie na virada do século 21, descobriram e coletaram mais material de Tarbosaurus.[18][19] Mais de 30 espécimes são conhecidos, incluindo mais de 15 crânios e vários esqueletos pós-cranianos completos.[13]

Descrição

A comparação do tamanho de diferentes espécimes de Tarbosaurus, cada um representando uma idade diferente.

Embora ligeiramente menor que o Tiranossauro, o Tarbosaurus foi um dos maiores tiranossaurídeos. Os maiores indivíduos conhecidos tinham entre 10 e 12 metro de comprimento.[2] A massa de um indivíduo totalmente crescido é considerada comparável ou ligeiramente menor que o tiranossauro, frequentemente estimada em cerca de 4-5 toneladas.[20][21]

O maior crânio do Tarbosaurus conhecido tem mais de 1,3 m de comprimento, maior do que todos os outros tiranossauros, exceto o tiranossauro.[13] O crânio era alto, como o do tiranossauro, mas não tão largo, especialmente na parte traseira. A parte traseira não expandida do crânio significava que os olhos do Tarbosaurus não estavam voltados diretamente para a frente, sugerindo que faltava a visão binocular do tiranossauro. Grandes fenestras (aberturas) no crânio reduziram seu peso. Entre 58 e 64 dentes revestiam suas mandíbulas, um pouco mais do que no tiranossauro, mas menos do que em tiranossaurídeos menores como o Gorgosaurus e o Alioramus. A maioria de seus dentes era oval em seção transversal, embora os dentes do pré-maxilar na ponta da mandíbula superior tivessem uma seção transversal em forma de D. Essa heterodontia é característica da família. Os dentes mais longos estavam na maxila (osso da mandíbula superior), com coroas de até 85 milímetros de comprimento. Na mandíbula inferior, uma crista na superfície externa do osso angular se articula com a parte posterior do osso dentário, criando um mecanismo de travamento exclusivo do Tarbosaurus e Alioramus. Outros tiranossaurídeos não tinham essa crista e tinham mais flexibilidade na mandíbula inferior.[3]

Restauração do animal em vida

Os tiranossaurídeos variavam pouco na forma do corpo, e o Tarbosaurus não foi exceção. A cabeça era apoiada por um pescoço em forma de S, enquanto o resto da coluna vertebral, incluindo a cauda longa, era mantida horizontalmente. O Tarbosaurus tinha membros anteriores minúsculos, proporcionalmente ao tamanho do corpo, o menor de todos os membros da família. As mãos tinham dois dedos com garras cada, com um terceiro metacarpo sem garras encontrado em alguns espécimes, semelhante a gêneros intimamente relacionados. Thomas Holtz sugeriu que o Tarbosaurus também tem uma redução terópode dos dedos IV-I "mais desenvolvida" do que em outros tiranossaurídeos,[22] já que o segundo metacarpo nos espécimes de Tarbosaurus que ele estudou é menor que o dobro do comprimento do primeiro metacarpo (outros tiranossauros têm um segundo metacarpo com cerca de duas vezes o comprimento do primeiro metacarpo). Além disso, o terceiro metacarpo em Tarbosaurus é proporcionalmente mais curto do que em outros tiranossaurídeos; em outros tiranossaurídeos (como Albertosaurus e Daspletosaurus), o terceiro metacarpo é frequentemente mais longo que o primeiro metacarpo, enquanto nos espécimes de Tarbosaurus estudados por Holtz, o terceiro metacarpo é mais curto que o primeiro.[13] Em contraste com os membros anteriores, os membros posteriores de três dedos eram longos e grossos, apoiando o corpo em uma postura bípede. A cauda longa e pesada serviu de contrapeso para a cabeça e o tronco e colocou o centro de gravidade sobre os quadris.[2]

Classificação

Diagrama mostrando as diferenças entre um crânio generalizado de Tarbosaurus (A) e Tyrannosaurus (B)

Tarbosaurus é classificado como um terópode na subfamília Tyrannosaurinae dentro da família Tyrannosauridae. Outros membros incluem Tyrannosaurus e o Daspletosaurus anterior, ambos da América do Norte,[16] e possivelmente o gênero mongol Alioramus.[3][14] Os animais desta subfamília estão mais intimamente relacionados ao Tiranossauro do que ao Albertosaurus e são conhecidos por sua construção robusta com crânios proporcionalmente maiores e fêmures mais longos do que na outra subfamília, Albertosaurinae.[13]

Tarbosaurus bataar foi originalmente descrito como uma espécie de Tyrannosaurus,[4] um arranjo que foi apoiado por alguns estudos mais recentes.[16][10] Outros preferem manter os gêneros separados, enquanto ainda os reconhecem como táxons irmãos.[13] Uma análise cladística de 2003 baseada em características do crânio identificou Alioramus como o parente mais próximo conhecido do Tarbosaurus, já que os dois gêneros compartilham características do crânio relacionadas à distribuição de estresse e que não são encontradas em outros tiranossauros. Se comprovada, essa relação argumentaria contra o Tarbosaurus se tornar um sinônimo de Tiranossauro e sugeriria que linhagens separadas de tiranossauro evoluíram na Ásia e na América do Norte.[3][14] Os dois espécimes conhecidos de Alioramus, que mostram características juvenis, provavelmente não são indivíduos juvenis de Tarbosaurus por causa de sua contagem de dentes muito maior (76 a 78 dentes) e sua fileira única de protuberâncias ósseas ao longo do topo de seus focinhos.[6]

A descoberta de Lythronax argestes, uma tiranossauro muito anterior revela ainda mais a estreita relação entre Tyrannosaurus e Tarbosaurus, e descobriu-se que Lythronax é um táxon irmão de um clado composto pelo gênero Campaniano Zhuchengtyrannus e gêneros Maastrichtiano Tyrannosaurus e Tarbosaurus. Outros estudos de Lythronax também sugerem que os tiranossauros asiáticos faziam parte de uma radiação evolutiva.[23]

Abaixo está o cladograma de Tyrannosauridae baseado na análise filogenética realizada por Loewen et al. em 2013.[24]

Erro de script: Nenhum módulo desse tipo "Clade".

Paleobiologia

Ontogenia

Predefinição:Imagem múltipla A maioria dos espécimes de Tarbosaurus representa indivíduos adultos ou subadultos; os juvenis permanecem muito raros. No entanto, a descoberta em 2006 de um indivíduo juvenil (MPC-D 107/7) incluindo um crânio completo de 290 milímetros foi relatada e descrita em 2011 e fornece informações sobre a história de vida desse dinossauro. Este indivíduo provavelmente tinha 2 a 3 anos no momento da morte. Comparado com crânios de adultos, o crânio juvenil era de construção fraca e os dentes eram finos, indicando diferentes preferências alimentares em juvenis e adultos que reduziram a competição entre diferentes faixas etárias.[25] O exame dos anéis escleróticos neste espécime juvenil sugere que eles também podem ter sido caçadores crepusculares ou noturnos. Se os membros adultos também eram noturnos é atualmente desconhecido devido à falta de evidências fósseis.[26]

Sentidos

Caixa craniana do Tarbosaurus (esquerda) ao lado de uma caixa cranina de Iguanodon (direita)

Um crânio de Tarbosaurus encontrado em 1948 por cientistas soviéticos e mongóis (PIN 553-1, originalmente chamado "Gorgosaurus" lancinator) incluía a cavidade do crânio que continha o cérebro. Ao fazer um molde de gesso do interior desta cavidade, Maleev pode fazer observações preliminares sobre a forma do cérebro de um Tarbosaurus.[27] Um novo molde de borracha de poliuretano permitiu um estudo mais detalhado da estrutura e função do cérebro do animal.[28]

A estrutura endocraniana do Tarbosaurus era semelhante à do Tyrannosaurus,[29] diferindo apenas nas posições de algumas raízes dos nervos cranianos, incluindo os nervos trigêmeo e acessório. Os cérebros dos tiranossaurídeos eram mais semelhantes aos dos crocodilianos e outros répteis não-aviários do que aos dos pássaros. O volume total do cérebro para um Tarbosaurus de 12 metros é estimado em apenas 184 centímetros cúbicos.[28]

O grande tamanho dos bulbos olfativos, bem como os nervos terminais e olfativos, sugerem que o Tarbosaurus tinha um olfato apurado, como também era o caso do Tyrannosaurus. O bulbo vomeronasal é grande e diferenciado do bulbo olfativo, que foi inicialmente sugerido como indicativo de um órgão de Jacobson bem desenvolvido, usado para detectar feromônios. Isso pode implicar que o Tarbosaurus teve um comportamento de acasalamento complexo.[28] No entanto, a identificação do bulbo vomeronasal foi contestada por outros pesquisadores, uma vez que eles não estão presentes em nenhum arcossauro vivo.[30]

O nervo auditivo também era grande, sugerindo boa audição, o que pode ter sido útil para a comunicação auditiva e consciência espacial. O nervo também tinha um componente vestibular bem desenvolvido, o que implica um bom senso de equilíbrio e coordenação. Em contraste, os nervos e as estruturas cerebrais associadas à visão eram menores e pouco desenvolvidos. O tecto mesencefálico, responsável pelo processamento visual nos répteis, era muito pequeno no Tarbosaurus, assim como o nervo óptico e o nervo oculomotor, que controla o movimento dos olhos. Ao contrário do Tyrannosaurus, que tinha olhos voltados para a frente que forneciam algum grau de visão binocular, o Tarbosaurus tinha um crânio mais estreito, mais típico de outros tiranossauros, nos quais os olhos estavam voltados principalmente para os lados. Tudo isso sugere que o Tarbosaurus era um animal mais olfativo e auditivo em sua percepção da realidade do que um ser visual.[28]

Paleoambiente

Localidade de fósseis de dinossauros na Mongólia, Tarbosaurus coletados na área A (esquerda)

A grande maioria dos fósseis de Tarbosaurus conhecidos foram recuperados da Formação Nemegt no deserto de Gobi, no sul da Mongólia. Esta formação geológica nunca foi datada radiometricamente, mas a fauna presente no registro fóssil indica que provavelmente foi depositada durante o início do Maastrichtiano, no final do Cretáceo Superior[31] cerca de 70 milhões de anos atrás.[32][33] A Formação Subashi, na qual os restos do Shanshanosaurus foram descobertos, também tem idade Maastrichtiana.[34]

Reconstrução paleoartística de um Tarbosaurus bataar.

Tarbosaurus é encontrado principalmente na Formação Nemegt, cujos sedimentos preservam grandes canais de rios e depósitos de solo que indicam um clima muito mais úmido do que os sugeridos pelas Formações Barun Goyot e Djadochta subjacentes. No entanto, os depósitos de caliche indicam pelo menos secas periódicas. Os sedimentos foram depositados nos canais e várzeas de grandes rios. As fácies rochosas desta formação sugerem a presença de lodaçais e lagos rasos. Os sedimentos também indicam que existia um habitat rico, oferecendo alimentos diversos em quantidades abundantes que poderiam sustentar dinossauros maciços do Cretáceo.[35] Fósseis de um tiranossauro não identificado da antiga Formação Djadochta, que se assemelham aos do Tarbosaurus, podem indicar que ele também viveu em uma época anterior e em um ecossistema mais árido do que o Nemegt.[36]

Fósseis de moluscos ocasionais são encontrados, assim como uma variedade de outros animais aquáticos como peixes e tartarugas.[31] Os crocodilianos incluíam várias espécies de Paralligator, um gênero com dentes adaptados para esmagar conchas.[37] Fósseis de mamíferos são extremamente raros na Formação Nemegt, mas muitas aves foram encontradas, incluindo a enantiornitina Gurilynia e o hesperornithiforme Judinornis, bem como Teviornis, um dos primeiros representantes dos ainda existentes Anseriformes (aves aquáticas). Os cientistas descreveram muitos dinossauros da Formação Nemegt, incluindo terópodes como o tiranossaurídeo Alioramus, o tiranossauróide Bagaraatan,[38] troodontídeos (Borogovia, Tochisaurus, Zanabazar), oviraptorossauros como Elmisaurus, Nemegtomaia e Rinchenia).[13] Entre os herbívoros, que Tarbosaurus provavelmente predava, haviam o anquilossaurídeo Saichania, o paquicefalossauro Prenocephale,[31] os grandes hadrossauros Saurolophus e Barsboldia e os saurópodes Nemegtosaurus e Opisthocoelicaudia.[3] Outros terópodes, como o gigantesco Therizinosaurus, podem ter sido herbívoros, e ornithomimossauros, como Anserimimus, Gallimimus e o gigantesco Deinocheirus, podem ter sido onívoros que só pegavam pequenas presas.[31][38]

Ver também

Referências

  1. 1,0 1,1 Paul, Gregory S. (2016). The Princeton Field Guide to Dinosaurs: Second Edition. [S.l.]: Princeton Press 
  2. 2,0 2,1 2,2 Maleev, E. A. (1955). traduzido para o inglês por F. J. Alcock. «New carnivorous dinosaurs from the Upper Cretaceous of Mongolia» (PDF). Doklady Akademii Nauk SSSR (em inglês). 104 (5): 779–783 
  3. 3,0 3,1 3,2 3,3 3,4 3,5 3,6 Hurum, J.H.; Sabath, K. (2003). «Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared». Acta Palaeontologica Polonica (em inglês). 48 (2): 161–190 
  4. 4,0 4,1 Maleev, Evgeny A. (1955). «Giant carnivorous dinosaurs of Mongolia». Doklady Akademii Nauk SSSR (em inglês). 104 (4): 634–637 
  5. Liddell, Henry G.; Scott, Robert (1980). Greek–English Lexicon (em inglês) Abridged ed. Oxford: Oxford University Press. ISBN 978-0-19-910207-5. (pede registo (ajuda)) 
  6. 6,0 6,1 Currie, Philip J. (2003). «Cranial anatomy of tyrannosaurids from the Late Cretaceous of Alberta» (PDF). Acta Palaeontologica Polonica. 48 (2): 191–226. Arquivado do original (PDF) em 21 de junho de 2007 
  7. Rozhdestvensky, Anatoly K. (1965). «Growth changes in Asian dinosaurs and some problems of their taxonomy». Paleontological Journal. 3: 95–109 
  8. Maleev, Evgeny A. (1974). «Gigantic carnosaurs of the family Tyrannosauridae». The Joint Soviet-Mongolian Paleontological Expedition Transactions. 1: 132–191 
  9. Barsbold, Rinchen (1983). «Carnivorous dinosaurs from the Cretaceous of Mongolia». The Joint Soviet-Mongolian Paleontological Expedition Transactions. 19: 5–119 
  10. 10,0 10,1 Carpenter, Ken. (1992). «Tyrannosaurids (Dinosauria) of Asia and North America». In: Mateer, Niall J.; Peiji, Chen. Aspects of Nonmarine Cretaceous Geology (em inglês). Beijing: China Ocean Press. pp. 250–268 
  11. Olshevsky, George; Ford, Tracy L. (1995). «The origin and evolution of the tyrannosaurids, part 1». Dinosaur Frontline (em japonês). 9: 92–119 
  12. Carr, Thomas D. (1999). «Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria)». Journal of Vertebrate Paleontology. 19 (3): 497–520. doi:10.1080/02724634.1999.10011161 
  13. 13,0 13,1 13,2 13,3 13,4 13,5 13,6 Holtz, Thomas R. Jr. (2004). «Tyrannosauroidea». In: Weishampel, David B.; Dodson, Peter; Osmólska, Halszka. The Dinosauria (em inglês) Second ed. Berkeley: University of California Press. p. 124. ISBN 978-0-520-24209-8 
  14. 14,0 14,1 14,2 Currie, Philip J.; Hurum, Jørn H.; Sabath, Karol (2003). «Skull structure and evolution in tyrannosaurid phylogeny» (PDF). Acta Palaeontologica Polonica. 48 (2): 227–234 
  15. Xu Xing; Norell, Mark A.; Kuang Xuewen; Wang Xiaolin; Zhao Qi; Jia Chengkai (2004). «Basal tyrannosauroids from China and evidence for protofeathers in tyrannosauroids». Nature (em inglês). 431 (7009): 680–684. Bibcode:2004Natur.431..680X. PMID 15470426. doi:10.1038/nature02855 
  16. 16,0 16,1 16,2 Carr, Thomas D.; Williamson, Thomas E.; Schwimmer, David R. (2005). «A new genus and species of tyrannosauroid from the Late Cretaceous (middle Campanian) Demopolis Formation of Alabama». Journal of Vertebrate Paleontology (em inglês). 25 (1): 119–143. doi:10.1671/0272-4634(2005)025[0119:ANGASO]2.0.CO;2 
  17. Watabe, Masato; Suzuki, Shigeru (2000). «Cretaceous fossil localities and a list of fossils collected by the Hayashibara Museum of Natural Sciences and Mongolian Paleontological Center Joint Paleontological Expedition (JMJPE) from 1993 through 1998». Hayashibara Museum of Natural Sciences Research Bulletin. 1: 99–108 
  18. Currie, Philip J. (2001). «Nomadic Expeditions, Inc., report of fieldwork in Mongolia, September 2000.». Alberta Palaeontological Society, Fifth Annual Symposium, Abstract Volume. Calgary: Mount Royal College. pp. 12–16 
  19. Currie, Philip J. (2002). «Report on fieldwork in Mongolia, September 2001.». Alberta Palaeontological Society, Sixth Annual Symposium, 'Fossils 2002,' Abstract Volume. Calgary: Mount Royal College. pp. 8–12 
  20. Paul, G.S., 2010, The Princeton Field Guide to Dinosaurs, Princeton University Press.
  21. Valkenburgh, B.; Molnar, R. E. (2002). «Dinosaurian and mammalian predators compared». Paleobiology (em inglês). 28 (4): 527–543. ISSN 0094-8373. doi:10.1666/0094-8373(2002)028<0527:DAMPC>2.0.CO;2 
  22. Carpenter K, Tanke D.H. & Skrepnick M.W. (2001), Mesozoic Vertebrate Life (Indiana University Press, ISBN 0-253-33907-3), p. 71.
  23. Loewen, Mark A; Irmis, Randall B; Sertich, Joseph J. W; Currie, Philip J; Sampson, Scott D (6 de novembro de 2013). «Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans». PLOS ONE. 8 (11): e79420. Bibcode:2013PLoSO...879420L. PMC 3819173Acessível livremente. PMID 24223179. doi:10.1371/journal.pone.0079420Acessível livremente 
  24. Loewen, M. A.; Irmis, R. B.; Sertich, J. J. W.; Currie, P. J.; Sampson, S. D. (2013). Evans, David C., ed. «Tyrant Dinosaur Evolution Tracks the Rise and Fall of Late Cretaceous Oceans». PLoS ONE. 8 (11): e79420. Bibcode:2013PLoSO...879420L. PMC 3819173Acessível livremente. PMID 24223179. doi:10.1371/journal.pone.0079420Acessível livremente 
  25. Tsuihiji, Takanobu; Watabe, Mahito; Tsogtbaatar, Khishigjav; Tsubamoto, Takehisa; Barsbold, Rinchen; Suzuki, Shigeru; Lee, Andrew H.; Ridgely, Ryan C.; Kawahara, Yasuhiro; Witmer, Lawrence M. (1 de maio de 2011). «Cranial Osteology of a Juvenile Specimen of Tarbosaurus bataar (Theropoda, Tyrannosauridae) from the Nemegt Formation (Upper Cretaceous) of Bugin Tsav, Mongolia» (PDF). Journal of Vertebrate Paleontology. 31 (3): 497–517. doi:10.1080/02724634.2011.557116 
  26. Tsuihiji, Takanobu; Watabe, Mahito; Tsogtbaatar, Khishigjav; Tsubamoto, Takehisa; Barsbold, Rinchen; Suzuki, Shigeru; Lee, Andrew H; Ridgely, Ryan C; Kawahara, Yasuhiro; Witmer, Lawrence M (16 de maio de 2011). «Tiny Tarbosaurus Shows How Tyrants Grew Up | Science | Smithsonian». Journal of Vertebrate Paleontology. 31 (3): 497–517. doi:10.1080/02724634.2011.557116. Consultado em 6 de junho de 2017 
  27. Maleev, Evgeny A. (1965). «On the brain of carnivorous dinosaurs». Paleontological Journal (em русский). 2: 141–143 
  28. 28,0 28,1 28,2 28,3 Saveliev, Sergei V.; Alifanov, Vladimir R. (2005). «A new study of the brain of the predatory dinosaur Tarbosaurus bataar (Theropoda, Tyrannosauridae)». Paleontological Journal. 41 (3): 281–289. doi:10.1134/S0031030107030070 
  29. Brochu, Christopher A. (2000). «A digitally-rendered endocast for Tyrannosaurus rex». Journal of Vertebrate Paleontology. 20 (1): 1–6. doi:10.1671/0272-4634(2000)020[0001:ADREFT]2.0.CO;2 
  30. Bever, G.S.; Brusatte, S.L.; Carr, T.D.; Xu, X.; Balanoff, A.M.; Norell, M.A. (2013). «The Braincase Anatomy of the Late Cretaceous Dinosaur Alioramus (Theropoda: Tyrannosauroidea)». Bulletin of the American Museum of Natural History. 376: 1–72. doi:10.1206/810.1. hdl:2246/6422 
  31. 31,0 31,1 31,2 31,3 Jerzykiewicz, Tomasz; Russell, Dale A. (1991). «Late Mesozoic stratigraphy and vertebrates of the Gobi Basin». Cretaceous Research. 12 (4): 345–377. doi:10.1016/0195-6671(91)90015-5 
  32. Sulliban, R.M. (2006). "A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia)." Pp. 347-366 in Lucas, S.G. and Sullivan, R.M. (eds.), Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 3.
  33. Gradstein, Felix M.; Ogg, James G.; and Smith, Alan G. (2005). A Geologic Time Scale 2004. Cambridge: Cambridge University Press. pp. 500pp. ISBN 978-0-521-78142-8 
  34. Shen, Y.B.; Mateer, Niall J. (1992). «An outline of the Cretaceous System in northern Xinjiang, western China». In: Mateer, Niall J.; Peiji, Chen. Aspects of Nonmarine Cretaceous Geology. Beijing: China Ocean Press. pp. 49–77 
  35. Novacek, M. (1996). Dinosaurs of the Flaming Cliffs. Bantam Doubleday Dell Publishing Group Inc. New York, New York. ISBN 978-0-385-47775-8
  36. Mortimer, M (2004). «Tyrannosauroidea». The Theropod Database. Consultado em 21 de agosto de 2007. Arquivado do original em 29 de setembro de 2013 
  37. Efimov, Mikhail B. (1983). «Revision of the fossil crocodiles of Mongolia». The Joint Soviet-Mongolian Paleontological Expedition Transactions (em русский). 24: 76–95 
  38. 38,0 38,1 Osmolska, H. (1996). «An unusual theropod dinosaur from the Late Cretaceous Nemegt Formation of Mongolia». Acta Palaeontologica Polonica. 41: 1-38 

Ligações externas

Predefinição:Theropoda

talvez você goste