- REDIRECIONAMENTO Predefinição:Nota de cabeçalho
Em matemática, uma função de Green é um tipo de função utilizada para resolver equações diferenciais não-homogêneas sujeitas a condições iniciais ou condições de contorno determinadas. Na teoria de muitos corpos, essa terminologia também é utilizada na física, especificamente na teoria quântica de campos, eletrodinâmica e teoria estatística de campos para se referir a vários tipos de funções de correlação, mesmo aquelas que não se encaixam na definição matemática.
As funções de Green têm esse nome em homenagem ao matemático britânico George Green, que foi o primeiro a desenvolver o conceito na década de 1830. No estudo moderno das equações diferenciais parciais, as funções de Green são estudadas principalmente do ponto de vista das soluções fundamentais.
Definição e aplicações
Uma função de Green, G(x, s), de um operador diferencial linear L = L(x), atuando em distribuições de um subconjunto do espaço euclidiano Rn, em um ponto s, é qualquer solução de
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle LG(x,s)=\delta(x-s)\quad\quad\quad\quad\quad\quad\quad\quad\quad(1) }
onde Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta} é a função delta de Dirac. Esta propriedade de uma função de Green pode ser explorada para resolver equações diferenciais da forma
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Lu(x)=f(x)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(2) }
Se o núcleo de L é não-trivial, então a função de Green não é única. No entanto, na prática, uma combinação de simetria, condições de contorno e/ou outros critérios impostos a priori dará uma função de Green única. Além disso, funções de Green em geral são distribuições, não necessariamente funções próprias.
Funções de Green também são uma ferramenta útil na resolução de equações da onda, equações de difusão e na mecânica quântica, onde a função de Green do hamiltoniano é um conceito chave, com ligações importantes para o conceito de densidade dos estados. À via de nota, a função de Green utilizada na física é geralmente definida com o sinal oposto, isto é,
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle LG(x,s)=-\delta(x-s)\,}
Esta definição não altera significativamente qualquer uma das propriedades da função de Green.
Se o operador é invariante por translações, o que ocorre quando L tem coeficientes constantes em relação a x, então a função de Green pode ser considerada como um operador de convolução, ou seja,
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,s)=G(x-s) \,}
Neste caso, a função de Green é o mesmo que a resposta ao impulso da teoria de sistemas LTI.
Motivação
- Redirecionamento Predefinição:VT
Grosso modo, se tal função G pode ser encontrada para o operador L, então se multiplicarmos a equação (1) pela função de Green por f(s) e em seguida realizarmos uma integração na variável s, obtemos;
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int LG(x,s) f(s) ds=\int \delta(x-s)f(s) \, ds=f(x)}
O membro direito é agora dado pela equação (2), sendo então igual a L u(x). Assim:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Lu(x)=\int LG(x,s) f(s) \, ds}
Como o operador L = L(x) é linear e atua sobre a variável x sozinha (e não sobre a variável de integração s), podemos retirar o operador L do sinal de integração no 2º membro, obtendo-se
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Lu(x)=L\left(\int G(x,s) f(s) \,ds\right)}
E isto sugere que
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x)=\int G(x,s) f(s) \,ds\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(3) }
Assim, podemos obter a função u(x) através da função de Green que deve ser obtida da equação (1) e do termo fonte do segundo membro da equação (2). Este processo reside na linearidade do operador L.
Em outras palavras, a solução da equação (2), u(x), pode ser determinada pela integral dada na equação (3). Embora f(x) seja conhecida, esta integração não pode ser realizada, a menos que G seja também conhecida. O problema agora reside em encontrar a função de Green G que satisfaz a equação (1). Por esta razão, a função de Green é chamada também às vezes de solução fundamental associada ao operador L.
Nem todo operador L admite uma função de Green. Uma função de Green também pode ser pensada como sendo um inverso pela direita de L. Além das dificuldades de encontrar-se uma função de Green para um determinado operador, a integral na equação (3) pode ser bastante difícil de se calcular. No entanto, o método fornece um resultado teoricamente exato.
Isto pode ser pensado como uma expansão de f de acordo com uma base de funções delta de Dirac (projetando-se f sobre δ(x − s)) e uma superposição da solução de cada projetor. Tal equação integral é conhecida como equação integral de Fredholm; o seu estudo constitui a teoria de Fredholm.
Funções de Green para a solução de problemas de valores de contorno não-homogêneos
A principal utilização das funções de Green na matemática é a resolução de problemas de valores de contorno não-homogêneos. Na física teórica moderna, as funções de Green são também geralmente utilizadas como propagadores em diagramas de Feynman (e a expressão função de Green é muitas vezes usada para qualquer função de correlação).
Estrutura matemática
Seja L o operador de Sturm-Liouville, um operador diferencial linear da forma
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L=\dfrac{d}{dx}\left[p(x) \dfrac{d}{dx}\right]+q(x)}
e seja D o operador condição de contorno
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Du= \begin{cases} \alpha_1 u'(0)+\beta_1 u(0) \\ \alpha_2 u'(l)+\beta_2 u(l) \end{cases} }
Seja f(x) uma função contínua em [0,l]. Devemos também supor que o problema
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} Lu &= f \\ Du &= 0 \end{align} }
é regular (isto é, só a solução trivial existe para o problema homogêneo).
Teorema
Há uma e apenas uma solução u(x) que satisfaz
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} Lu & = f\\ Du & = 0 \end{align} }
e é dada por
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x)=\int_0^\ell f(s) G(x,s) \, ds}
onde G(x,s) é uma função de Green que satisfaz as seguintes condições:
- G(x,s) é contínua em x e s
- Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \ne s} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L G(x, s)=0}
- Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \ne 0} , Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle D G(x, s)=0}
- Descontinuidade na derivada: Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G'(s_{+0}, s)-G'(s_{-0}, s)=1 / p(s)}
- Simetria: G(x, s) = G(s, x)
Calculando funções de Green
Expansão em autovalores
Se um operador diferencial L admite um conjunto de autovetores Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi_n(x)} (ou seja, um conjunto de funções Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi_n} e escalares Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda_n} tais que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L \Psi_n=\lambda_n \Psi_n)} ) que são completos, então é possível construir uma função de Green a partir destes autovetores e autovalores.
Completo significa que o conjunto de funções Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ \Psi_n \right\}} satisfaz a seguinte relação de completeza:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(x-x')=\sum_{n=0}^\infty \Psi_n^*(x) \Psi_n(x')}
Então o seguinte se aplica:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x, x')=\sum_{n=0}^\infty \dfrac{\Psi_n^*(x) \Psi_n(x')}{\lambda_n}}
onde * representa a conjugação complexa.
Aplicando o operador L nos dois membros desta equação resulta na relação de completeza, que assumimos ser verdadeira.
O estudo geral da função de Green apresentado na forma acima, e sua relação com os espaços de funções formados por autovetores, é conhecido como teoria de Fredholm.
Funções de Green para o Laplaciano
As funções de Green para os operadores diferenciais lineares envolvendo o Laplaciano podem ser facilmente postas em uso com a segunda das identidades de Green.
Para deduzir o teorema de Green, comece com o teorema da divergência (também conhecido como teorema de Gauss):
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_V \nabla \cdot \vec A\ dV=\int_S \vec A \cdot d\hat\sigma}
Seja Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec A=\phi\nabla\psi-\psi\nabla\phi} e substitua na lei de Gauss. Calcule Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla\cdot\vec A} e applique a regra da cadeia para o operador Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla} :
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \nabla\cdot\vec A &=\nabla\cdot(\phi\nabla\psi \;-\; \psi\nabla\phi)\\ &=(\nabla\phi)\cdot(\nabla\psi) \;+\; \phi\nabla^2\psi \;-\; (\nabla\phi)\cdot(\nabla\psi) \;-\; \psi\nabla^2\phi\\ &=\phi\nabla^2\psi \;-\; \psi\nabla^2\phi \end{align}}
Substituindo no teorema da divergência, temos o teorema de Green:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_V (\phi\nabla^2\psi-\psi\nabla^2\phi) dV=\int_S (\phi\nabla\psi-\psi\nabla\phi)\cdot d\hat\sigma}
Suponha que o operador diferencial linear L é o Laplaciano, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2} , e que existe uma função de Green G para o Laplaciano. A propriedade que define a função de Green ainda se aplica:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L G(x,x')=\nabla^2 G(x,x')=\delta(x-x')}
Seja Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi=G} no teorema de Green. Então:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} & {} \quad \int_V \left[ \phi(x') \delta(x-x')-G(x,x') \nabla^2\phi(x')\right]\ d^3x' \\[6pt] & = \int_S \left[\phi(x')\nabla' G(x,x')-G(x,x')\nabla'\phi(x')\right] \cdot d\hat\sigma' \end{align} }
Com esta expressão, é possível resolver a equação de Laplace Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2\phi(x)=0} ou a equação de Poisson Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla^2\phi(x)=-\rho(x)} , sob tanto pelas condições de contorno de Neumann como pelas condições de contorno de Dirichlet. Em outras palavras, podemos resolver para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} em qualquer ponto dentro de um volume onde: (1) o valor de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} é especificado na superfície delimitadora do volume (condições de contorno de Dirichlet), ou; (2) a derivada normal de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} é especificada na superfície delimitadora (condições de contorno de Neumann).
Suponha que o problema seja resolver para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} dentro da região. Então a integral
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\limits_V {\phi(x')\delta(x-x')\ d^3x'}}
reduz-se simplesmente a Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} , devido à propriedade da definição da função delta de Dirac, e temos:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)=\int_V G(x,x') \rho(x')\ d^3x'+\int_S \left[\phi(x')\nabla' G(x,x')-G(x,x')\nabla'\phi(x')\right] \cdot d\hat\sigma'}
Esta fórmula expressa a propriedade bem conhecida das funções harmônicas que se seu valor ou sua derivada normal é conhecida sobre uma superfície delimitadora, então seu valor dentro do volume é conhecido em todos os pontos.
Em eletrostática, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)} é interpretada como o potencial elétrico, Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho(x)} como a densidade de carga elétrica e a derivada normal Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nabla\phi(x')\cdot d\hat\sigma'} como a componente normal do campo elétrico.
Se o problema é resolver um problema de valor de contorno de Dirichlet, a função de Green deve ser escolhida de forma que Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')} se anule quando x ou x' está sobre a superfície delimitadora. Assim, sobra apenas um dos dois termos na integral de superfície. Se o problema é resolver um problema de valor de contorno de Neumann, a função de Green é escolhida de forma que sua derivada normal se anule na superfície delimitadora, já que esta parece ser a escolha mais lógica. (Veja "Eletrodinâmica clássica", J. D. Jackson, página 39).
Sem as condições de contorno, a função de Green para o Laplaciano (função de Green para a equação de Laplace em três dimensões) é:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle G(x,x')=\dfrac{1}{|x-x'|}}
Supondo que a superfície limite estenda-se ao infinito e substituindo a função de Green nessa expressão, temos a conhecida expressão do potencial elétrico em termos da densidade de carga (no sistema de unidades CGS):
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi(x)=\int_V \dfrac{\rho(x')}{|x-x'|} \, d^3x'}
Exemplo
Dado o problema
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} Lu & = u'' + u = f(x)\\ u(0)& = 0, \quad u\left(\dfrac{\pi}{2}\right) = 0 \end{align} }
Encontre a função de Green.
Primeiro passo: A função de Green para o operador linear é definida como a solução de
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g''(x) + g(x) = \delta(x-s).\,}
Se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\ne s} , então a função delta é nula, e a solução geral é
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x,s)=c_1 \cos x+c_2 \sin x.}
Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x<s} , a condição de contorno em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=0} implica que
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(0,s)=c_1 \cdot 1+c_2 \cdot 0=0, \quad c_1 = 0}
A equação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\left(\dfrac{\pi}{2},s\right)=0} é ignorada porque Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \ne \dfrac{\pi}{2}} se Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad x < s} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle s \ne \dfrac{\pi}{2}} .
Para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>s} , a condição de contorno em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\pi/2} implica que
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\left(\dfrac{\pi}{2},s\right) = c_3 \cdot 0+c_4 \cdot 1=0, \quad c_4 = 0 }
A equação Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \quad g(0,s)=0} é ignorada por razões semelhantes.
Resumindo os resultados até então:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x,s)= \begin{cases} c_2 \sin x, & \text{se }x<s\\ c_3 \cos x, & \text{se }s<x \end{cases} }
Segundo passo: A próxima tarefa é determinar Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{2}} and Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{3}} .
Garantindo a continuidade da função de Green em Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=s\,\!} , temos que
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 \sin s=c_3 \cos s\,}
O operador Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} equivale ao operador de Sturm-Liouville com Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(x)=1} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle q(x)=1} . Pela condição de descontinuidade da derivada,
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle Lim_{\epsilon\rightarrow 0}\ G'(s+\epsilon, s)-G'(s-\epsilon, s)=1 / p(s)} , temos
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_3 \cdot [-\sin s ]-c_2 \cdot \cos s=1\,}
As duas equações (des)contínuas podem ser resolvidas para Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{2}} e Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{3}} para obter
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_2 = -\cos s \quad;\quad c_3 = -\sin s}
Assim a função de Green para este problema é:
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x,s)=\begin{cases} -\cos s \sin x, & x<s\\ -\sin s \cos x, & s<x \end{cases} }
Outros exemplos
- Seja n = 1 e seja R o subconjunto. Seja L=d/dx. Então a função degrau de Heaviside H(x − x0) é uma função de Green de L em x0.
- Seja n = 2 e seja o plano { (x, y) : x, y ≥ 0 } o subconjunto e L o Laplaciano. Assuma também que uma condição de contorno de Dirichlet é imposta em x = 0 e uma condição de contorno de Neumann é imposta em y = 0. Então a função de Green é
- Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} & {} \quad G(x, y, x_0, y_0) \\[6pt] & = \dfrac{1}{2\pi}\left[\ln\sqrt{(x-x_0)^2+(y-y_0)^2}-\ln\sqrt{(x+x_0)^2+(y-y_0)^2}\right] \\[6pt] & {} \quad {}+\dfrac{1}{2\pi}\left[\ln\sqrt{(x+x_0)^2+(y+y_0)^2}-\ln\sqrt{(x-x_0)^2+(y+y_0)^2}\right] \end{align} }
Ver também
- Funções de Green discretas podem ser definidas em gráficos e redes.
- Diagramas de Feynman
- Identidades de Green
- Resposta ao impulso, o análogo da função de Green no processamento de sinais
- Formalismo de Keldysh
- Teoria espectral
Referências
- Predefinição:Tradução/ref
- S. S. Bayin (2006), Mathematical Methods in Science and Engineering, Wiley, Chapters 18 and 19.
- Eyges, Leonard, The Classical Electromagnetic Field, Dover Publications, New York, 1972. ISBN 0-486-63947-9. (Chapter 5 contains a very readable account of using Green's functions to solve boundary value problems in electrostatics.)
- A. D. Polyanin and V. F. Zaitsev, Handbook of Exact Solutions for Ordinary Differential Equations (2nd edition), Chapman & Hall/CRC Press, Boca Raton, 2003. ISBN 1-58488-297-2
- A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9
- G. B. Folland, Fourier Analysis and Its Applications, Wadsworth and Brooks/Cole Mathematics Series.
Ligações externas
- Introduction to the Keldysh Nonequilibrium Green Function Technique by A. P. Jauho
- Tutorial on Green's functions
- Boundary Element Method (for some idea on how Green's functions may be used with the boundary element method for solving potential problems numerically)
- At Citizendium
- MIT video lecture on Green's function