𝖂𝖎ƙ𝖎𝖊

Lógica

A lógica é uma ciência de índole matemática e fortemente ligada à Filosofia. Já que o pensamento é a manifestação do conhecimento, e que o conhecimento busca a verdade, é preciso estabelecer algumas regras para que essa meta possa ser atingida. Assim, a lógica é o ramo da filosofia que cuida das regras do bem pensar, ou do pensar correto, sendo, portanto, um instrumento do pensar. A aprendizagem da lógica não constitui um fim em si. Ela só tem sentido enquanto meio de garantir que nosso pensamento proceda corretamente a fim de chegar a conhecimentos verdadeiros. Podemos, então, dizer que a lógica trata dos argumentos, isto é, das conclusões a que chegamos através da apresentação de evidências que a sustentam. O principal organizador da lógica clássica foi Aristóteles, com sua obra chamada Organon. Ele divide a lógica em formal e material.

Um sistema lógico é um conjunto de axiomas e regras de inferência que visam representar formalmente o raciocínio válido . Diferentes sistemas de lógica formal foram construídos ao longo do tempo quer no âmbito estrito da Lógica Teórica, quer em aplicações práticas na computação e em Inteligência artificial.

Tradicionalmente, lógica é também a designação para o estudo de sistemas prescritivos de raciocínio, ou seja, sistemas que definem como se "deveria" realmente pensar para não errar, usando a razão, dedutivamente e indutivamente. A forma como as pessoas realmente raciocinam é estudado nas outras áreas, como na psicologia cognitiva.

Como ciência, a lógica define a estrutura de declaração e argumento e elabora fórmulas através das quais estes podem ser codificados. Implícita no estudo da lógica está a compreensão do que gera um bom argumento e de quais os argumentos que são falaciosos.

A lógica filosófica lida com descrições formais da linguagem natural. A maior parte dos filósofos assumem que a maior parte do raciocínio "normal" pode ser capturada pela lógica, desde que se seja capaz de encontrar o método certo para traduzir a linguagem corrente para essa lógica.

Abaixo estão discussões mais específicas sobre alguns sistemas lógicos. Veja também: lista de tópicos em lógica.


Lógica matemática

Lógica Matemática é o uso da lógica formal para estudar o raciocínio matemático-- ou, como propõe Alonzo Church (*Introduction to Mathematical Logic* (Princeton, New Jersey:Princeton University Press,1956; décima edição, 1996),'lógica tratada pelo método matemático'. No início do século XX, lógicos e filósofos tentaram provar que a matemática, ou parte da matemática, poderia ser reduzida à lógica.(Gottlob Frege, p.ex., tentou reduzir a aritmética à lógica; Bertrand Russell e A. N. Whitehead, tentaram reduzir toda a matemática então conhecida à lógica -- a chamada 'lógica de segunda ordem'.) Uma das suas doutrinas lógico-semânticas era que a descoberta da forma lógica de uma frase, na verdade, revela a forma adequada de dizê-la, ou revela alguma essência previamente escondida. Há um certo consenso que a redução falhou -- ou que precisaria de ajustes --, assim como há um certo consenso que a lógica -- ou alguma lógica -- é uma maneira precisa de representar o raciocínio matemático. Ciência que tem por objeto o estudo dos métodos e princípios que permitem distinguir raciocínios válidos de outros não válidos;

Lógica filosófica

A lógica estuda e sistematiza a argumentação válida. A lógica tornou-se uma disciplina praticamente autónoma em relação à filosofia, graças ao seu elevado grau de precisão e tecnicismo. Hoje em dia, é uma disciplina que recorre a métodos matemáticos, e os lógicos contemporâneos têm em geral formação matemática. Todavia, a lógica elementar que se costuma estudar nos cursos de filosofia é tão básica como a aritmética elementar e não tem elementos matemáticos. A lógica elementar é usada como instrumento pela filosofia, para garantir a validade da argumentação. Quando a filosofia tem a lógica como objecto de estudo, entramos na área da filosofia da lógica, que estuda os fundamentos das teorias lógicas e os problemas não estritamente técnicos levantados pelas diferentes lógicas. Hoje em dia há muitas lógicas além da teoria clássica da dedução de Russell e Frege (como as lógicas livres, modais, temporais, paraconsistentes, difusas, intuicionistas, etc.), o que levanta novos problemas à filosofia da lógica. A filosofia da lógica distingue-se da lógica filosófica, que não estuda problemas levantados por lógicas particulares, mas problemas filosóficos gerais, que se situam na intersecção da metafísica, da epistemologia e da lógica. São problemas centrais de grande abrangência, correspondendo à disciplina medieval conhecida por «Lógica & Metafísica», e abrangendo uma parte dos temas presentes na própria Metafísica, de Aristóteles: a identidade de objectos, a natureza da necessidade, a natureza da verdade, o conhecimento a priori, etc. Precisamente por ser uma «subdisciplina transdisciplinar», o domínio da lógica filosófica é ainda mais difuso do que o das outras disciplinas. Para agravar as incompreensões, alguns filósofos chamam «lógica filosófica» à filosofia da lógica (e vice-versa). Em qualquer caso, o importante é não pensar que a lógica filosófica é um género de lógica, a par da lógica clássica, mas «mais filosófica»; pelo contrário, e algo paradoxalmente, a lógica filosófica, não é uma lógica no sentido em que a lógica clássica é uma lógica, isto é, no sentido de uma articulação sistemática das regras da argumentação válida.

A lógica informal estuda os aspectos da argumentação válida que não dependem exclusivamente da forma lógica. O tema introdutório mais comum no que respeita à lógica é a teoria clássica da dedução (lógica proposicional e de predicados, incluindo formalizações elementares da linguagem natural); a lógica aristotélica é por vezes ensinada, a nível universitário, como complemento histórico e não como alternativa à lógica clássica.» [Desidério Murcho]

"Lógica", depois ela foi substituída pela invenção da Lógica Matemática. Relaciona-se com a elucidação de idéias como referência, previsão, identidade, verdade, quantificação, existência, e outras. A Lógica filosófica está muito mais preocupada com a conexão entre a Linguagem Natural e a Lógica.

Lógica de predicados

Gottlob Frege, em sua Conceitografia (Begriffsschrift), descobriu uma maneira de reordenar várias sentenças para tornar sua forma lógica clara, com a intenção de mostrar como as sentenças se relacionam em certos aspectos. Antes de Frege, a lógica formal não obteve sucesso além do nível da lógica de sentenças: ela podia representar a estrutura de sentenças compostas de outras sentenças, usando palavras como "e", "ou" e "não", mas não podia quebrar sentenças em partes menores. Não era possível mostrar como "Vacas são animais" leva a concluir que "Partes de vacas são partes de animais".

A lógica sentencial explica como funcionam palavras como "e", "mas", "ou", "não", "se-então", "se e somente se", e "nem-ou". Frege expandiu a lógica para incluir palavras como "todos", "alguns", e "nenhum". Ele mostrou como podemos introduzir variáveis e quantificadores para reorganizar sentenças.

  • "Todos os humanos são mortais" se torna "Todos os X são tais que, se x é um humano então x é mortal." que pode ser escrito simbolicamente como:
  • "Alguns humanos são vegetarianos" se torna "Existe algum (ao menos um) x tal que x é humano e x é vegetariano" que pode ser escrito simbolicamente como:
.

Frege trata sentenças simples sem substantivos como predicados e aplica a eles to "dummy objects" (x). A estrutura lógica na discussão sobre objetos pode ser operada de acordo com as regras da lógica sentencial, com alguns detalhes adicionais para adicionar e remover quantificadores. O trabalho de Frege foi um dos que deu inicio à lógica formal contemporânea.

Frege adiciona à lógica sentencial: (1) o vocabulário de quantificadores (o A de ponta-cabeça, e o E invertido) e variáveis, (2) uma semântica que explica que as variáveis denotam objetos individuais e que os quantificadores têm algo como a força de "todos" ou "alguns" em relação a esse objetos, e (3) métodos para usá-los numa linguagem. Para introduzir um quantificador "todos", você assume uma variável arbitrária, prova algo que deva ser verdadeira, e então prova que não importa que variável você escolha, que aquilo deve ser sempre verdade. Um quantificador "todos" pode ser removido aplicando-se a sentença para um objeto em particular. Um quantificador "algum" (existe) pode ser adicionado a uma sentença verdadeira de qualquer objeto; pode ser removida em favor de um temo sobre o qual você ainda não esteja pressupondo qualquer informação.

Lógica de vários valores

Sistemas que vão além dessas duas distinções (verdadeiro e falso) são conhecidos como lógicas não-aristotélicas, ou lógica de vários valores (ou então lógicas polivaluadas, ou ainda polivalentes).

No início do século 20, Jan Łukasiewicz investigou a extensão dos tradicionais valores verdadeiro/falso para incluir um terceiro valor, "possível".

Lógicas como a lógica difusa foram então desenvolvidas com um número infinito de "graus de verdade", representados, por exemplo, por um número real entre 0 e 1. Probabilidade bayesiana pode ser interpretada como um sistema de lógica onde probabilidade é o valor verdade subjetivo.

Lógica e computadores

A Lógica é extensivamente usada em áreas como Inteligência Artificial, e Ciência da computação.

Nas décadas de 50 e 60, pesquisadores previram que quando o conhecimento humano pudesse ser expresso usando lógica com notação matemática, supunham que seria possível criar uma máquina com a capacidade de pensar, ou seja, inteligência artificial. Isto se mostrou mais difícil que o esperado em função da complexidade do raciocínio humano. programação lógica é uma tentativa de fazer computadores usarem raciocínio lógico e a linguagem de programação Prolog é comumente utilizada para isto.

Na lógica simbólica e lógica matemática, demonstrações feitas por humanos podem ser auxiliadas por computador. Usando demonstração automática de teoremas os computadores podem achar e checar demonstrações, assim como trabalhar com demonstrações muito extensas.

Na ciência da computação, a álgebra booleana é a base do projeto de hardware.

Tipos de Lógica

De uma maneira geral, pode-se considerar que a lógica, tal como é usada na filosofia e na matemática, observa sempre os mesmos princípios básicos: a lei do terceiro excluído, a lei da não-contradição e a lei da identidade. A esse tipo de lógica pode-se chamar "lógica clássica", ou "lógica aristotélica".

Além desta lógica, existem outros tipos de lógica que podem ser mais apropriadas dependendo da circunstância onde são utilizadas. Podem ser divididas em dois tipos:

  • Complementares da lógica clássica: além dos três princípios da lógica clássica, essas formas de lógica têm ainda outros princípios que as regem, estendendo o seu domínio. Alguns exemplos:
  • Lógica modal: agrega à lógica clássica o princípio das possibilidades. Enquanto na lógica clássica existem sentenças como: "se amanhã chover, vou viajar", "minha avó é idosa e meu pai é jovem", na lógica modal as sentenças são formuladas como "é possível que eu viaje se não chover", "minha avó necessariamente é idosa e meu pai não pode ser jovem", etc.
  • Lógica epistêmica: também chamada "lógica do conhecimento", agrega o princípio da certeza, ou da incerteza. Alguns exemplos de sentença: "pode ser que haja vida em outros planetas, mas não se pode provar", "é impossível a existência de gelo a 100°C", "não se pode saber se a duendes existem ou não", etc.
  • Lógica deôntica: forma de lógica vinculada à moral, agrega os princípios dos direitos, proibições e obrigações. As sentenças na lógica deôntica são da seguinte forma: "é proibido fumar mas é permitido beber", "se você é obrigado a pagar impostos, você é proibido de sonegar", etc.
  • Anti-clássicas: são formas de lógica que derrogam pelo menos um dos três princípios fundamentais da lógica clássica. Alguns exemplos incluem:
  • Lógica paraconsistente: É uma forma de lógica onde não existe o princípio da contradição. Nesse tipo de lógica, tanto as sentenças afirmativas quanto as negativas podem ser falsas ou verdadeiras, dependendo do contexto. Uma das aplicações desse tipo de lógica é o estudo da semântica, especialmente em se tratando dos paradoxos. Um exemplo: "fulano é cego, mas vê". Pelo princípio da lógica clássica, o indivíduo que vê, um "não-cego", não pode ser cego. Na lógica paraconsistente, ele pode ser cego para ver algumas coisas, e não-cego para ver outras coisas.
  • Lógica paracompleta: Esta lógica derroga o princípio do terceiro excluído, isto é, uma sentença pode não ser totalmente verdadeira, nem totalmente falsa. Um exemplo de sentença que pode ser assim classificada é: "fulano conhece a China". Se ele nunca esteve lá, essa sentença não é verdadeira. Mas se mesmo nunca tendo estado lá ele estudou a história da China por livros, fez amigos chineses, viu muitas fotos da China, etc; essa sentença também não é falsa.
  • Lógica difusa: Mais conhecida como "lógica fuzzy", trabalha com o conceito de graus de pertinência. Assim como a lógica paracompleta, derroga o princípio do terceiro excluído, mas de maneira comparativa, valendo-se de um elemento chamado conjunto fuzzy. Enquanto na lógica clássica supõe-se verdadeira uma sentença do tipo "se algo é quente, não é frio" e na lógica paracompleta pode ser verdadeira a sentença "algo pode não ser quente nem frio", na lógica difusa poder-se-ia dizer: "algo é 30% quente, 25% morno e 45% frio". Esta lógica tem grande aplicação na informática e na estatística, sendo inclusive a base para indicadores como o coeficiente de Gini e o IDH.

Testes de Lógica

Vejam alguns testes simples de lógica:

1.Você está numa cela onde existem duas portas, cada uma vigiada por um guarda. Existe uma porta que dá para a liberdade, e outra para a morte. Você está livre para escolher a porta que quiser e por ela sair. Poderá fazer apenas uma pergunta a um dos dois guardas que vigiam as portas. Um dos guardas sempre fala a verdade, e o outro sempre mente e você não sabe quem é o mentiroso e quem fala a verdade. Que pergunta você faria?

2.Você é prisioneiro de uma tribo indígena que conhece todos os segredos do Universo e portanto sabem de tudo. Você está para receber sua sentença de morte. O cacique o desafia: "Faça uma afirmação qualquer. Se o que você falar for mentira você morrerá na fogueira, se falar uma verdade você será afogado. Se não pudermos definir sua afirmação como verdade ou mentira, nós te libertaremos. O que você diria?

3. Epiménides era um grego da cidade de Minos. Dizem que eles tem a fama de mentir muito. Certa vez, o mesmo citou esta passagem:

Era uma vez um bode que disse:

- Quando a mentira nunca é desvendada, quem está mentindo sou eu.

Em seguida o leão disse:

- Se o bode for um mentiroso, o que o dragão diz também é mentira.

Por fim o dragão disse:

- Quem for capaz de desvendar a minha mentira, então, ele estará dizendo a verdade.

Qual deles está mentindo?

Este teste é mais conhecido como paradoxo de Epiménides!

Ver também

Predefinição:Wikibooks

af:Formele logika bg:Логика bn:যুক্তি ca:Lògica cs:Logika da:Logik de:Logik en:Logic eo:Logiko es:Lógica et:Loogika fi:Logiikka fr:Logique he:לוגיקה hu:Logika ia:Logica id:Logika io:Logiko it:Logica ja:論理学 ko:일반논리학 la:Logica lt:Logika lv:Loģika ms:Logik nl:Logica pl:Logika ro:Logică ru:Логика simple:Logic sk:Logika su:Logika sv:Logik tr:Mantık uk:Логіка Predefinição:Link FA zh:逻辑学

talvez você goste