𝖂𝖎ƙ𝖎𝖊

Kurt Gödel: mudanças entre as edições

(Desfeita a edição 51613356 de Kaktus Kid: uso indevido da ferramenta de reversor, reversão sem sentido)
Sem resumo de edição
Linha 23: Linha 23:
|conjuge            =
|conjuge            =
|religiao            =[[Teísmo]]
|religiao            =[[Teísmo]]
|assinatura          =Kurt Gödel signature.svg
|assinatura          =[[Imagem:Kurt Gödel signature.svg|180px]]
|notas              =
|notas              =
}}
}}

Edição das 01h55min de 26 de março de 2018

Kurt Gödel
Kurt Gödel, ca. 1926
Conhecido(a) por Teorema da incompletude de Gödel
Teorema da completude de Gödel
Prova da consistência da hipótese do continuum com os axiomas de Zermelo-Fraenkel
Nascimento 28 de abril de 1906[[Categoria:Predefinição:Categorizar-ano-século-milénio/1]]
Áustria-Hungria Brünn, Morávia, Áustria-Hungria (hoje pertencente à República Checa)
Morte 14 de janeiro de 1978 (71 anos)[[Categoria:Predefinição:Categorizar-ano-século-milénio/1]]
Estados Unidos Princeton, Nova Jérsei, Estados Unidos
Nacionalidade Áustria Austríaco, Estados Unidos Norte-americano
Alma mater Universidade de Viena
Prêmios Prêmio Albert Einstein (1951), Gibbs Lecture (1951), Medalha Nacional de Ciências (1974), Membro da Royal Society[1]
Assinatura
Kurt Gödel signature.svg
Orientador(es)(as) Hans Hahn
Instituições Instituto de Estudos Avançados de Princeton
Campo(s) Matemática, lógica matemática
Tese 1929: Über die Vollständigkeit des Logikkalküls

Kurt Friedrich Gödel (Brünn, Áustria-Hungria[1], 28 de abril de 1906Princeton, Estados Unidos, 14 de janeiro de 1978) foi um matemático austríaco, naturalizado norte-americano.

O trabalho mais conhecido de Gödel é seu teorema da incompletude, no qual afirma que qualquer sistema axiomático suficiente para incluir a aritmética dos números inteiros não pode ser simultaneamente completo e consistente. Isto significa que se o sistema é auto-consistente, então existirão proposições que não poderão ser nem comprovadas nem negadas por este sistema axiomático. E se o sistema for completo, então ele não poderá validar a si mesmo — seria inconsistente.

Vida

Kurt Friedrich Gödel (em alemão, pronuncia-se Predefinição:IPA2 Ltspkr.png ouça) nasceu em Brünn, província austro-húngara da Morávia (hoje Brno, na República Tcheca), em uma família de ascendência alemã, filho de Rudolf Gödel, um gerente de fábrica têxtil e Marianne Gödel (nascida Handschuh).[2] Na época de seu nascimento, a população da cidade falava em sua maioria a língua alemã,[3] e esta era a língua de seus pais.[4] Os ancestrais de Kurt Gödel foram muitas vezes ativos na vida cultural em Brno. Por exemplo, seu avô Joseph Gödel foi um cantor famoso da época e durante alguns anos um membro da "Brünner Männergesangverein".[5]

Kurt era conhecido na família como Der Herr Warum (Sr. Por quê?), por conta do grande número de perguntas que fazia.

Segundo o seu irmão, Kurt teve uma infância feliz, mesmo sendo tímido e se aborrecendo facilmente. Foi batizado duas semanas após seu nascimento como protestante luterano, segundo a religião da mãe, tendo Friedrich Redlich como padrinho e inspiração para seu segundo nome.

A primeira guerra mundial não o atingiu diretamente, Brünn estava bem distante das zonas de batalha. Mas, em 1918, com o estabelecimento da Tchecoslováquia como nação, houve um isolamento da minoria que falava alemão na cidade. Kurt renunciaria em 1929 à cidadania tcheca, tornando-se austríaco oficialmente.

Em 1923 concluiu, com louvor, o curso fundamental na escola alemã de Brünn e embora tivesse excelente talento para linguagens, ele se aprofundou em História e Matemática. Seu interesse pela Matemática aumentou em 1920, quando acompanhou Rudolf, seu irmão mais velho, que fora para Viena cursar a Escola de Medicina da Universidade de Viena. Em sua adolescência, estudou Goethe, o manual de Gabelsberger, a teoria das cores de Isaac Newton e as "Críticas" de Kant.

Estudo em Viena

Embora inicialmente pretendesse estudar Física Teórica, aos 18 anos, ele freqüentou cursos de Matemática e Filosofia, conseguindo logo o mestrado em Matemática. Nessa época ele adotou as ideias do realismo matemático. Leu os Princípios Metafísicos da Ciência da Natureza (Metaphysische Anfangsgrunde Der Naturwissenschaft), de Kant, e participou do Círculo de Viena juntamente com Moritz Schlick, Hans Hahn, e Rudolf Carnap.

Kurt estudava a teoria dos números quando participou de um seminário com Moritz Schlick sobre a "Introduction to Mathematical Philosophy", de Bertrand Russell, e interessou-se imediatamente pela lógica matemática.

Nessa época de grande atividade, conhece sua futura esposa, Adele Nimbursky (nascida Porkert, 1899–1981), que, na época, trabalhava como cantora e dançarina em um cabaré vienense, Der Nachtfalter. Adele era divorciada e seis anos mais velha do que ele. Os pais de Gödel se opuseram ao relacionamento, razão pela qual eles só viriam a se casar dez anos depois.[6]

Começa a publicar escritos sobre lógica e frequenta aulas de David Hilbert, em Bolonha, sobre a completude e consistência de sistemas matemáticos.

Em 1929, Gödel tornou-se cidadão austríaco e completou sua dissertação para doutoramento sob a supervisão de Hans Hahn, onde estabeleceu a completude do cálculo de predicados de primeira ordem, também conhecido como Teorema da completude de Gödel.

Trabalho em Viena

Em 1930 obteve um doutorado e produziu uma versão combinada de seus escritos sobre a completude, a qual foi publicada pela Academia de Ciências de Viena.

Em 1931 publicou seu famoso teorema da incompletude, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme. Neste escrito ele demonstrou que qualquer sistema matemático axiomático, suficiente para incluir a aritmética dos números naturais, necessariamente:

1. não pode ser simultaneamente completo e consistente. (Teorema da Incompletude)
2. se o sistema é consistente, sua consistência não pode ser provada internamente ao sistema.

Estes dois teoremas encerraram centenas de anos de tentativas de estabelecer um conjunto completo de axiomas que possibilitassem deduzir toda a Matemática como os Principia Mathematica ou no formalismo de Hilbert. Isso também implica que um computador jamais possa ser programado para responder todas as questões matemáticas.

Em 1932 foi diplomado pela Universidade de Viena e, em 1933, tornou-se Privatdozent (docente não remunerado).

A ascensão de Adolf Hitler ao poder não afetou diretamente a vida de Gödel em Viena, pois ele não tinha interesse em política. Entretanto, após o assassinato de Schlick por um estudante nazista, Gödel ficou muito chocado e teve sua primeira crise depressiva.

Visita à América do Norte

Nesse mesmo ano de 1933, viajou para os Estados Unidos. Lá, encontrou Albert Einstein e inscreveu-se na conferência anual da American Mathematical Society. Durante este ano ele desenvolveu as ideias de computabilidade e das funções recursivas com o propósito de lecionar sobre as funções recursivas gerais e o conceito de verdade matemática. Este trabalho foi desenvolvido na área da teoria dos números usando a construção dos números de Gödel.

Em 1934 Gödel apresentou uma série de aulas no Instituto de Estudos Avançados de Princeton (Institute for Advanced Study, IAS) intituladas 'Sobre as proposições indecidíveis dos sistemas matemáticos formais'. Stephen Kleene, que justamente completava seu doutorado em Princeton, anotou essas aulas, as quais foram subsequentemente publicadas.

Gödel visitou o IAS novamente no outono de 1935. A viagem foi difícil e exaustiva, resultando em uma recaída depressiva.

Voltou a lecionar em 1937 e durante esse ano trabalhou arduamente na prova da consistência da hipótese do continuum.

Em 20 de setembro de 1938 casou com Adele, contra a vontade dos pais. Logo após visitou novamente o IAS e, na primavera de 1939, a University of Notre Dame.

Em 1938 anunciou a demonstração da consistência relativa do Axioma da Escolha, a Hipótese Generalizada do Contínuo e outros enunciados, sob o suposto de que os axiomas da Teoria de Conjuntos (sem o Axioma da Escolha) são consistentes[2], mas a prova completa só será publicada em 1940.[3] Esse trabalho contribui para o esclarecimento do primeiro Problema de Hilbert.

Trabalho em Princeton

Depois da Anschluss (anexação da Áustria pela Alemanha, em 1938), o título de Privatdozent foi abolido. Na nova ordem, Gödel teria que se submeter a um concurso para obter um outro cargo universitário. No entanto, seus vínculos anteriores com judeus do Círculo de Viena, especialmente com Hahn, pesariam contra ele. Sua situação se complicou quando ele foi considerado apto para o serviço militar. Diante do risco de ser convocado para as fileiras do exército alemão, decidiu emigrar para os Estados Unidos.

Em janeiro de 1940, ele e sua mulher saíram da Europa através da ferrovia Transiberiana e viajaram pela Rússia e Japão, até chegarem à América do Norte em 4 de março de 1940. Estabeleceram-se em Princeton, onde Gödel recebeu grande apoio de Norbert Wiener e passou a integrar o IAS. Nessa época, voltou-se para a Filosofia e a Física, estudando detalhadamente os trabalhos de Gottfried Leibniz, Kant e Edmund Husserl.

No final de 1940 demonstrou a existência da solução paradoxal das equações de campo da teoria geral da relatividade de Albert Einstein. Continuando seus trabalhos em lógica, no mesmo ano publicou o estudo sobre a 'consistência do axioma da escolha e da hipótese do continuum generalizada com os axiomas da teoria dos conjuntos', que se tornou um clássico da Matemática Moderna.

Em 1946, Gödel tornou-se membro permanente do IAS e, em 1948, naturalizou-se cidadão estadunidense. Passou a ser professor pleno do instituto, em 1953, e professor emérito, em 1976.

No início da década de 1970, Gödel distribuiu aos amigos um estudo desenvolvido a partir da prova ontológica da existência de Deus, de Leibniz, o qual acabou sendo conhecido como "prova ontológica de Gödel".

Kurt Gödel recebeu muitos prêmios e honrarias durante sua vida e também o primeiro Prêmio Albert Einstein, em 1951. Em 1974 recebeu a Medalha Nacional de Ciência.

Com o passar dos anos, porém, Gödel tornou-se cada vez mais esquivo ao contato com outras pessoas, à exceção de um pequeno círculo de amigos. Tal comportamento está provavelmente relacionada ao quadro paranoico que desenvolveu: acreditava haver uma conspiração para matá-lo por envenenamento. Só comia o que lhe fosse preparado por Adele, sua esposa, a qual o ajudava a controlar seus delírios persecutórios e a se manter vivo. Durante os últimos anos de sua vida, o cientista esteve por diversas vezes internado em hospitais psiquiátricos. Quando Adele adoeceu e foi internada por seis meses, Gödel praticamente parou de se alimentar. Acabou morrendo, por complicações decorrentes da inanição, em Princeton, no dia 14 de janeiro de 1978.[7] Foi sepultado no Cemitério de Princeton.[8]

Publicações selecionadas

  • Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme.- I. Monatshefte für Mathematik und Physik, vol. 38 (1931), pp 173–198. (disponível em Inglês in "From Frege to Gödel", van Heijenoort, Harvard Univ. Press, 1971. - [4] )
  • The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Princeton University Press: Princeton, 1940. Reimpresso em Collected Works, volume II, pp. 33–101.
  • "What is Cantor's continuum problem?" The American Mathematical Monthly, 54, 1947, pp. 515–525. Versão revisada em: Paul Benacerraf and Hilary Putnam (eds.). Philosophy of Mathematics: Selected Readings. Cambridge Univ. Press: Cambridge, 1964, pp. 470–485.
  • "My philosophical viewpoint", c. 1960, não publicado.
  • "The modern development of the foundations of mathematics in the light of philosophy", 1961, não publicado.
  • "B. Rosser: Extensions of some theorems of Gödel and Church". Journal of Symbolic Logic, 1 (1936), N1, pp. 87–91
  • Collected Works. Oxford University Press: New York. Editor-in-chief: Solomon Feferman.
    • Volume I: Publications 1929–1936 ISBN 978-0-19-503964-1 / Paperback:ISBN 978-0-19-514720-9, 1986,
    • Volume II: Publications 1938–1974 ISBN 978-0-19-503972-6 / Paperback:ISBN 978-0-19-514721-6, 1990.
    • Volume III: Unpublished Essays and Lectures ISBN 978-0-19-507255-6 / Paperback:ISBN 978-0-19-514722-3,
    • Volume IV: Correspondence, A–G ISBN 978-0-19-850073-5,
    • Volume V: Correspondence, H–Z ISBN 978-0-19-850075-9.

Predefinição:Notas

  1. Hoje República Tcheca.
  2. The consistency of the axiom of choice and of the generalized continuum hypothesis. Reimpresso em Collected Works, volume II, pp. 26–27.
  3. The consistency of the axiom of choice and of the generalized continuum hypothesis with the axioms of set theory. Reimpresso em Collected Works, volume II, pp. 33–101.

Ver também

Referências

  1. Kreisel, G. (1980). «Kurt Godel. 28 April 1906-14 January 1978». Biographical Memoirs of Fellows of the Royal Society (em inglês). 26: 148–126. doi:10.1098/rsbm.1980.0005 
  2. Dawson 1997, pp. 3–4
  3. Predefinição:Cite EB1911
  4. Dawson 1997, p. 12
  5. Procházka 2008, pp. 30–34.
  6. Wang, Hao. Reflections on Kurt Gödel. The MIT Press, 1990.
  7. Gödel e Einstein: e quando o tempo não resiste à amizade?. Por Sílvio R. Dahmen. Revista Brasileira de Ensino de Física, vol. 28, n°4. São Paulo, 2006. ISSN 1806-1117
  8. Predefinição:Findagrave

Bibliografia

  • Dawson, John W., 1997. Logical dilemmas: The life and work of Kurt Gödel. Wellesley MA: A K Peters.
  • 1911 Encyclopædia Britannica/Brünn. (2007, September 19). In Wikisource, The Free Library. Retrieved 10 pm EST March 13, 2008.
  • Rebecca Goldstein, 2005. Incompleteness: The Proof and Paradox of Kurt Gödel. W. W. Norton & Company, Nova Iorque. ISBN 0-393-32760-4 pbk.

Ligações externas

Commons
O Commons possui imagens e outros ficheiros sobre Kurt Gödel


Predefinição:Navbox with collapsible sections Predefinição:Medalha Nacional de Ciências Predefinição:Teoria dos conjuntos

talvez você goste