𝖂𝖎ƙ𝖎𝖊

Matriz de adjacência: mudanças entre as edições

imported>Luckas-bot
m (Bot: Adicionando: ca:Matriu d'adjacència)
imported>ArthurBot
m (r2.6.3) (Bot: Adicionando: sl:Matrika sosedstva)
Linha 55: Linha 55:
[[pl:Macierz sąsiedztwa]]
[[pl:Macierz sąsiedztwa]]
[[ru:Матрица смежности]]
[[ru:Матрица смежности]]
[[sl:Matrika sosedstva]]
[[sv:Grannmatris]]
[[sv:Grannmatris]]
[[uk:Матриця суміжності]]
[[uk:Матриця суміжності]]

Edição das 17h57min de 30 de janeiro de 2011

Uma matriz de adjacência é uma das formas de se representar um grafo.

Dado um grafo G com n vértices, podemos representá-lo em uma matriz n x n M. A definição precisa das entradas da matriz varia de acordo com as propriedades do grafo que se deseja representar, porém de forma geral o valor mij guarda informações sobre como os vértices vi e vj estão relacionados (isto é, informações sobre a adjacência de vi e vj).

Para representar um grafo não direcionado, simples e sem pesos nas arestas, basta que as entradas mij da matriz M contenham 1 se vi e vj são adjacentes e 0 caso contrário. Se as arestas do grafo tiverem pesos, mij pode conter, ao invés de 1 quando houver uma aresta entre vi e vj, o peso dessa mesma aresta.

6n-graph2.svg

Por exemplo, a matriz de adjacência do grafo ao lado é

Em grafos não direcionados, as matrizes de adjacência são simétricas ao longo da diagonal principal - isto é, a entrada mij é igual à entrada mji. Matrizes de adjacência de grafos direcionados, no entanto, não são assim. Num digrafo sem pesos, a entrada mij da matriz é 1 se há um arco de vi para vj e 0 caso contrário.

Ver também

Ícone de esboço Este sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

ca:Matriu d'adjacència de:Repräsentation von Graphen im Computer en:Adjacency matrix es:Matriz de adyacencia fa:ماتریس مجاورت fr:Matrice d'adjacence he:מטריצת שכנות hu:Szomszédsági mátrix it:Matrice delle adiacenze ja:隣接行列 ko:인접 행렬 nl:Bogenmatrix pl:Macierz sąsiedztwa ru:Матрица смежности sl:Matrika sosedstva sv:Grannmatris uk:Матриця суміжності ur:ملمس مصفوفہ vi:Ma trận kề zh:邻接矩阵

talvez você goste