Sem resumo de edição |
imported>FelipeVargasRigo Sem resumo de edição |
||
Linha 42: | Linha 42: | ||
[[Categoria:Teoria dos grafos]] | [[Categoria:Teoria dos grafos]] | ||
[[Categoria:Matrizes]] | [[Categoria:Matrizes]] | ||
[[Categoria:Estruturas de dados]] | |||
[[de:Repräsentation von Graphen im Computer]] | [[de:Repräsentation von Graphen im Computer]] |
Edição das 22h30min de 22 de junho de 2009
Uma matriz de adjacência é uma das formas de se representar um grafo.
Dado um grafo G com n vértices, podemos representá-lo em uma matriz n x n M. A definição precisa das entradas da matriz varia de acordo com as propriedades do grafo que se deseja representar, porém de forma geral o valor mij guarda informações sobre como os vértices vi e vj estão relacionados (isto é, informações sobre a adjacência de vi e vj).
Para representar um grafo não direcionado, simples e sem pesos nas arestas, basta que as entradas mij da matriz M contenham 1 se vi e vj são adjacentes e 0 caso contrário. Se as arestas do grafo tiverem pesos, mij pode conter, ao invés de 1 quando houver uma aresta entre vi e vj, o peso dessa mesma aresta.
Por exemplo, a matriz de adjacência do grafo ao lado é
Em grafos não direcionados, as matrizes de adjacência são simétricas ao longo da diagonal principal - isto é, a entrada mij é igual à entrada mji. Matrizes de adjacência de grafos direcionados, no entanto, não são assim. Num digrafo sem pesos, a entrada mij da matriz é 1 se há um arco de vi para vj e 0 caso contrário.
Ver também
de:Repräsentation von Graphen im Computer en:Adjacency matrix es:Matriz de adyacencia fa:ماتریس مجاورت fr:Matrice d'adjacence he:מטריצת שכנות hu:Szomszédsági mátrix it:Matrice delle adiacenze ja:隣接行列 ko:인접 행렬 nl:Bogenmatrix pl:Macierz sąsiedztwa ur:ملمس مصفوفہ vi:Ma trận kề zh:邻接矩阵