Este artigo não cita fontes confiáveis. (Dezembro de 2011) |
O teste da comparação ou 1º critério de comparação, estabelece um método para aferir a convergência de séries positivas, ou para a convergência absoluta.
Sejam as séries de termos não negativos:
Então se , para todo o (i.e: a partir de uma dada ordem), e se a segunda série converge, então a primeira também converge (e tem soma inferior). Ou ainda, se a primeira diverge, então a segunda também diverge.
Podemos também estabelecer que se , então a primeira série converge contanto que a segunda também convirja.
2º critério da comparação
Considermos as séries acima descritas e ainda o seguinte limite:
- se as séries e têm a mesma natureza.
- se
- (a) se converge, então converge
- se
- (a) se converge, então converge
Demonstração
Observe cuidadosamente que a segunda afirmação implica a primeira. Demonstremos a primeira:
Suponha que seja convergente. Ou seja, as somas parciais formam uma seqüência convergente:
- é uma sequência convergente e portanto de Cauchy.
Denote:
Queremos mostrar que é uma sucessão de Cauchy. Para tal estime:
Use a desigualdade triangular:
Sendo uma sucessão de Cauchy, também o é.
Exemplos
Seja a série fatorial que define o número de Euler: Denote por e as somas parciais e o resíduo de ordem N:
Vamos mostrar que a série converge e ainda extrairemos uma estimativa para o erro:
Como
Assim comparamos:
Usanda a soma da série geométrica, temos:
fr:Série convergente#Principe général : règles de comparaison