Num plano, a geodésica é a menor distância que une dois pontos tal que, para pequenas variações da forma da curva ,o seu comprimento é estacionário. A representação da geodésica em um plano representa a projeção de um círculo máximo sobre uma esfera. Assim, tanto na superfície de uma esfera quanto na superfície esférica deformada num plano, a reta é uma curva, já que a menor distância possível entre dois pontos somente poderá ser curvada, pois uma reta precisaria, necessariamente, permanecer sempre num plano para ser a menor distância entre pontos.
Do ponto de vista prático, na maioria dos casos, a geodésica é a curva de menor comprimento que une dois pontos.
Em uma "geometria plana" (espaço euclidiano), essa curva é um segmento de reta, mas em "geometrias curvas" (geometria riemanniana), muito utilizadas por exemplo na Teoria da Relatividade Geral, a curva de menor distância entre dois pontos pode não ser uma reta.
Para entender isso, peguemos como exemplo a curvatura do globo terrestre e seus continentes. Se traçarmos uma linha ligando duas capitais de continentes distintos, perceberemos que a linha não é reta, ela é um arco do círculo máximo; entretanto, se a distância entre as duas cidades for pequena, a linha que cobre o segmento do arco de círculo máximo será realmente uma reta.
Todo mundo aprende na escola que a menor distância entre dois pontos é uma reta. Mas pouca gente se recorda – e alguns professores se esquecem de avisar – de que isso é válido apenas em um espaço plano. Em um espaço tridimensional, a coisa muda de figura.
Imaginemos, por exemplo, um triângulo equilátero, aquele em que todos os lados são iguais, e todos os ângulos internos somam 180 graus.
Marcando dois pontos dentro do triângulo, a menor distância entre eles sempre será uma reta. Além disso, não importa o tamanho dos lados; sempre, em qualquer circunstância, a soma dos ângulos internos do triângulo será 180 graus.
Pois bem. Vamos mudar agora o paradigma. Imaginemos um espaço tridimensional: aquele em que nós vivemos todos os dias. Além das duas dimensões existentes no plano bidimensional (altura e comprimento), há uma outra, a profundidade.
Nesse tipo de plano, a menor distância entre dois pontos é uma curva, mais especificamente um arco de círculo máximo. E – o que parece mais bizarro – a soma dos ângulos internos de um triângulo não é 180, mas 270 graus.
Observe a figura:
Repare que o triângulo formado entre os pontos A-B-C possui três ângulos retos (90 graus). Portanto, 270 graus.
Esta representação pode ser confirmada na nossa realidade se pensarmos no planeta Terra.
Suponha que a base de nosso triângulo seja formada pelo arco resultante da metade da linha do Equador. Com qualquer meridiano, o ângulo formado com o Equador será de 90 graus. Seguindo-se um meridiano qualquer até o Polo Norte e, de lá, seguindo-se outro meridiano até o Equador, teremos mais dois ângulos retos.
Esse efeito tem implicações interessantes; por exemplo, quando você voa num avião, a trajetória que ele faz para ir de um destino a outro não segue uma “linha reta”, como muita gente imagina. Ele segue a “curvatura” da Terra, fazendo pequenos ajustes no sentido da viagem, a fim de percorrer o menor trecho possível. Se o avião fosse simplesmente “em linha reta”, acabaria por percorrer uma trajetória maior do que faz ao seguir a curvatura terrestre.
Uma imagem pode, por exemplo, demonstrar como uma viagem entre Nova Iorque e Lisboa é feita, seguindo-se a menor distância entre dois pontos em um espaço tridimensional. [1]
Ver também
- ↑ «Nem sempre a menor distância entre dois pontos é uma reta». Dando a cara a tapa. 25 de maio de 2012. Consultado em 13 de maio de 2016
- ↑ https://blogdomaximus.com/2012/05/25/nem-sempre-a-menor-distancia-entre-dois-pontos-e-uma-reta/