𝖂𝖎ƙ𝖎𝖊

Forma canônica de Jordan

A forma canônica de Jordan (português brasileiro) ou forma canónica de Jordan (português europeu) é uma forma de representar uma matriz ou operador linear através de uma outra matriz semelhante à original que é quase uma matriz diagonal. No corpo dos números complexos, esta forma é uma matriz triangular superior, em que os únicos elementos não-nulos são aqueles da diagonal ou imediatamente acima da diagonal.

O nome é uma referência a Camille Jordan.

Definições

Seja T um operador linear de um K-espaço vetorial V de dimensão finita, sendo K o corpo ou .

Caso Real

Se , escrevamos o polinômio característico de T na forma

,

com se .

Chama-se de um bloco de Jordan de ordem r à matriz quadrada de ordem r dada por [1]

,

que pode ser escrita através da soma de duas matrizes:

onde N é uma matriz nilpotente, pois .

Se são matrizes quadradas, não necessariamente de ordens iguais, define-se como sendo a matriz quadrada de ordem igual à soma das ordens de Falhou ao verificar gramática (MathML com retorno SVG ou PNG (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_1,\ldots,B_k} dada por

.

Caso Complexo

Se , escrevamos o polinômio característico de T na forma

,

onde é uma raiz complexa de pT, com e se .

Se é uma raiz complexa de , define-se, analogamente à matriz ,

,

onde

e

Teorema (de Jordan)

Sejam V um K-espaço vetorial de dimensão finita e T um operador linear de V. Se e

,

com se , , então existe uma base na qual a matriz de T é da forma

,

onde são da forma e .

Se e

,

onde é uma raiz complexa de pT com e se (), então existe uma base com relação à qual a matriz de T é da forma

onde são da forma e e são da forma e .

Corolário

A matriz de um operador T com relação a uma base qualquer é semelhante a uma matriz da forma (caso complexo) ou (caso real).

Observações

Blocos de Jordan com a mesma raiz

O teorema afirma, no caso complexo, que a matriz equivalente é da forma:

,

mas é possivel que quando

Por exemplo[2], a matriz 4x4 abaixo está na forma canônica de Jordan:

,

em que , e .

Unicidade

A forma canônica de Jordan é única, a menos de permutações entre os blocos de Jordan.

Referências

  1. Triangulação - Forma Canónica de Jordan, site do Departamento de Matemática da Universidade de Aveiro
  2. «Faça exemplos com O Monitor». omonitor.io. Consultado em 22 de março de 2016 

Bibliografia

  • (em inglês) Daniel T. Finkbeiner II, Introduction to Matrices and Linear Transformations, Third Edition, Freeman, 1978.
  • (em inglês) Gene H. Golub and Charles F. Van Loan, Matrix Computations (3rd ed.), Johns Hopkins University Press, Baltimore, 1996.
  • (em inglês) Shafarevich, Igor R., Remizov, Alexey O. Linear Algebra and Geometry, Springer, 2012, ISBN 978-3-642-30993-9


Predefinição:Classes de matriz

talvez você goste