𝖂𝖎ƙ𝖎𝖊

Fecho

Em topologia, o fecho ou aderência de um subespaço topológico S de X é o menor fechado de X que contém S.

Definição formal

O fecho do conjunto X, denotado por , é o conjunto formado pelos pontos aderentes a X [1].

Propriedades

  • O fecho de todo conjunto X de números reais (ou seja, ) é um conjunto fechado, isto é, . No entanto, há dois casos especiais, em que ou . Isso porque e são conjuntos ao mesmo tempo fechados e abertos[2].
  • O fecho de S é a intersecção de todos os fechados que contêm S;
  • O fecho de um conjunto X () é obtido acrescentando-se a X os seus pontos de acumulação, ou seja, é a união de dois conjuntos, X e (=conjunto dos pontos aderentes): [3]. Por exemplo, se tomarmos o conjunto aberto , então seu fecho será o conjunto fechado [4].

O fecho de S é a união de S com a sua fronteira.

Exemplos

  • o fecho do conjunto dos números racionais é a reta . Também o fecho do conjunto dos números irracionais é . e não são conjuntos fechados [5].


Referências

  1. LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 170.
  2. LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 172.
  3. LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 177.
  4. Alves, Marcos (2008). «O Conjunto de Cantor» (PDF). Universidade Federal de Santa Catarina. Consultado em 24 de fevereiro de 2020 
  5. LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 171.
Ícone de esboço Este sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

talvez você goste