𝖂𝖎ƙ𝖎𝖊

Axioma do par

O axioma do par diz que, dados dois conjuntos, existe um conjunto no qual esses dois conjuntos são elementos.

Em termos um poucos mais técnicos, sejam A e B conjuntos quaisquer (que podem ser iguais). Então existe um conjunto C tal que e .

Nota: existem formulações alternativas do axioma, que dizem que C não tem outro elemento além de A e B, e que C é único, mas, junto com os axiomas da extensão e da separação, mostra-se que essas formulações são equivalentes.

Em linguagem matemática, o axioma se escreve assim:

Usando-se os axiomas da extensão e da separação, chega-se ao seguinte teorema:

Esboço da prova: o axioma da separação é usado para construir, a partir do z que existe, o conjunto

e o axioma da extensão garante que todos conjuntos z que satisfazem são iguais.

Como esse conjunto que tem o par de conjuntos como elementos é único, podemos dar um nome para ele, a saber:

Como nada nos axiomas obriga x a ser diferente de y, definimos também:

Ver também

Outros projetos Wikimedia também contêm material sobre este tema:
Wikilivros Livros e manuais no Wikilivros


Predefinição:Teoria dos conjuntos

Ícone de esboço Este sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.

talvez você goste