𝖂𝖎ƙ𝖎𝖊

Arquivo:Atmospheric Transmission.svg

Imagem numa resolução maior(arquivo SVG, de 741 × 724 pixels, tamanho: 321 kB)

Renderizar essa imagem em .

Este arquivo é do Wikimedia Commons e pode ser utilizado por outros projetos. Sua página de descrição de arquivo é reproduzida abaixo.

Descrição do arquivo

Descrição
English: This figure shows the absorption bands in the Earth's atmosphere (middle panel) and the effect that this has on both solar radiation and upgoing thermal radiation (top panel). Individual absorption spectrum for major greenhouse gases plus Rayleigh scattering are shown in the lower panel.
Data
Fonte This figure was prepared by Robert A. Rohde for the Global Warming Art project.
Autor Д.Ильин: vectorization (File:Atmospheric Transmission-ru.svg); Cepheiden translation back to english
Outras versões

[editar]


.svg:

.png:

 
Este(a) desenho vetorial foi criado com Inkscape .
Translate this file This SVG file contains embedded text that can be translated into your language, using any capable SVG editor, text editor or the SVG Translate tool. For more information see: About translating SVG files.


This figure shows the absorption bands in the Earth's atmosphere (middle panel) and the effect that this has on both solar radiation and upgoing thermal radiation (top panel). Individual absorption spectrum for major greenhouse gases plus Rayleigh scattering are shown in the lower panel.

Both the Earth and the Sun emit electromagnetic radiation (e.g. light) that closely follows a blackbody spectrum, and which can be predicted based solely on their respective temperatures. For the Sun, these emissions peak in the visible region and correspond to a temperature of ~5500 K. Emissions from the Earth vary following variations in temperature across different locations and altitudes, but always peak in the infrared.

The position and number of absorption bands are determined by the chemical properties of the gases present. In the present atmosphere, water vapor is the most significant of these greenhouse gases, followed by carbon dioxide and various other minor greenhouse gases. In addition, Rayleigh scattering, the physical process that makes the sky blue, also disperses some incoming sunlight. Collectively these processes capture and redistribute 25-30% of the energy in direct sunlight passing through the atmosphere. By contrast, the greenhouse gases capture 70-85% of the energy in upgoing thermal radiation emitted from the Earth surface.

Data sources and notes

The data used for these figures is based primarily on Spectral Calculator of GATS, Inc. archive copy at the Wayback Machine which implements the LINEPAK system of calculating absorption spectra (Gordley et al. 1994) from the HITRAN2004 (Rothman et al. 2004) spectroscopic database. To aid presentation, the absorption spectra were smoothed. Features with a bandwidth narrower than 0.5% of their wavelength may be obscured.

Calculations were done on the assumption of direct vertical transmission through an atmosphere with gas concentrations representative of modern day averages. In particular, absorption would be greater for radiation traveling obliquely through the atmosphere as it would encounter more gas.

The total scattering and absorption curve includes only the components indicated in the lower panel. These represent the vast majority of absorption contributing to the greenhouse effect and follow the treatment of Peixoto and Oort (1992), but other minor species such as carbon monoxide, nitric oxide and chloroflourocarbons (CFCs) have been omitted. Also omitted was scattering due to aerosols and other sources besides Rayleigh scattering.

The peaks in the blackbody spectra were adjusted to have the same height for ease in presentation.

Licenciamento

Eu, titular dos direitos autorais desta obra, publico-a nos termos da seguinte licença:
Creative Commons CC-Zero Este arquivo esta disponível nos termos Creative Commons CC0 1.0 Universal Public Domain Dedication.
A pessoa que associou uma obra a este documento dedicou a obra ao domínio público, renunciando todos os seus direitos sobre a obra em todo o mundo ao abrigo da legislação de direitos autorais, e todos os direitos legais conexos que tinha sobre a obra, na medida permitida por lei. Obras disponibilizadas nos termos CC0 não requerem atribuição. Ao citar a obra, não deve sugerir aprovação por parte do autor.

References

  • Gordley, Larry L., Benjamin T. Marshall, Allen D. Chu (1994). "LINEPAK: Algorithms for modeling spectral transmittance and radiance". Journal of Quantitative Spectroscopy & Radiative Transfer 52 (5): 563-580.
  • L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner (2004). "The HITRAN 2004 molecular spectroscopic database". Journal of Quantitative Spectroscopy & Radiative Transfer 96: 139-204.
  • Peixoto, Jose P. and Abraham H. Oort (1992) Physics of Climate, Springer ISBN: 0883187124.

Other versions

[editar]


.svg:

.png:

Legendas

Adicione uma explicação em uma linha sobre o que este arquivo representa

Itens retratados neste arquivo

retrata

image/svg+xml

130a81475d186ffb00ef185c7f981dd1fab93805

328 865 Byte

724 pixel

741 pixel

Histórico do arquivo

Clique em uma data/horário para ver como o arquivo estava em um dado momento.

Data e horárioMiniaturaDimensõesUsuárioComentário
atual16h19min de 18 de abril de 2023Miniatura da versão das 16h19min de 18 de abril de 2023741 × 724 (321 kB)wikimediacommons>EfbrazilAdding white background color so renders correctly on smartphone

As seguinte página usa este arquivo:

Metadados

talvez você goste